Supporting Information

Controlling Palladium Particle Size and Dispersion as a Function of Loading by Chemical Vapour Impregnation: An Investigation Using Propane Total Oxidation as a Model Reaction Liam A. Bailey,^{1*} Mark Douthwaite,¹ Thomas E. Davies,¹ David J. Morgan,¹ Stuart H. Taylor^{1*}

¹ Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cardiff CF24 4HQ, UK.

*Corresponding Authors: Liam A. Bailey (Email: <u>baileyla2@cardiff.ac.uk</u>), Stuart H. Taylor (Email: <u>taylorsh@cardiff.ac.uk</u>)

Table S1. Activity data for the Pd/Al₂O₃ catalysts synthesised by wet impregnation. T_{20} = Temperature at which 20 % conversion was achieved. T_{50} = Temperature at which 50 % conversion was achieved. Reaction conditions: 1000 ppm propane/10% O₂/N₂, Gas Hourly Space Velocity (GHSV) 50,000 h⁻¹, Temperature range 200 – 500 °C.

Catalyst	T ₂₀ (°C)	T ₅₀ (°C)	Decomposition rate at 250 °C (mol _{C6H8} h^{-1} kg _{cat} ⁻¹)
1.0 Wt% Pd/Al ₂ O ₃	297	335	2.05x10 ⁻⁶
2.5 Wt% Pd/Al ₂ O ₃	276	305	1.51x10 ⁻⁶
5.0 Wt% Pd/Al ₂ O ₃	301	335	4.46x10 ⁻⁷

Table S2. Palladium oxidation state and surface concentration for catalysts synthesised by chemical vapour impregnation as determined by XPS.

Catalyst	Pd oxidation state ^a	Surface concentration (%)
1.0 Wt% Pd/Al ₂ O ₃	2+	0.19
2.5 Wt% Pd/Al ₂ O ₃	2+	0.40
5.0 Wt% Pd/Al ₂ O ₃	2+	0.70

Table S3. Post reaction CO chemisorption data for catalysts synthesised by CVI after 50 hour TOL study

Sample	Palladium surface sites (g ⁻¹)	Dispersion (%)	
1.0 Wt% Pd/Al ₂ O ₃	2.05 x10 ¹⁹	30	
2.5 Wt% Pd/Al ₂ O ₃	3.98 x10 ¹⁹	28	
5.0 Wt% Pd/Al ₂ O ₃	7.95 x10 ¹⁹	26	

Table S4. Physicochemical properties of the Pd/Al_2O_3 wet impregnation catalysts from MP-AES and BET analysis.

Sample	Pd weight loading (%)	BET (m ² g ⁻¹)
1.0 Wt% Pd/Al ₂ O ₃	0.91	125
2.5 Wt% Pd/Al ₂ O ₃	2.45	125
5.0 Wt% Pd/Al ₂ O ₃	4.98	125

Table S5. Physical properties and activity characteristics of Pd/Al_2O_3 catalysts synthesised by wet impregnation extracted from and based on CO chemisorption characterisation.

Sample	CO adsorbed	Palladium surface	Dispersion ^a (%)	TOF ^b (10 ⁻³)(s ⁻¹)
	(mmol g⁻¹)	sites ^a (g ⁻¹)		
1.0 Wt% Pd/Al ₂ O ₃	5.56x10-3	6.79x1018	12	1.81
2.5 Wt% Pd/Al ₂ O ₃	1.45x10-2	1.70x1019	8	2.01
5.0 Wt% Pd/Al ₂ O ₃	1.71x10-2	1.98x1019	7	6.79

a. Calculated from CO chemisorption assuming a stoichiometry of 2.

b. Calculated at 250 °C

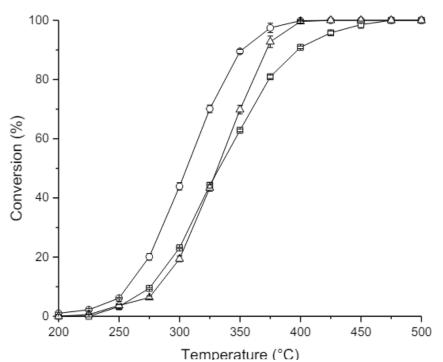


Figure S1. Propane conversion as a function of temperature for the Pd/Al_2O_3 catalysts synthesised by wet impregnation. (Square) 1.0 Wt% Pd/Al_2O_3 , (Circle) 2.5 Wt% Pd/Al_2O_3 , (Triangle) 5.0 Wt% Pd/Al_2O_3 . Reaction conditions: 1000 ppm propane/10% O_2/N_2 , Gas Hourly Space Velocity (GHSV) 50,000 h⁻¹, Temperature range 200 – 500 °C.

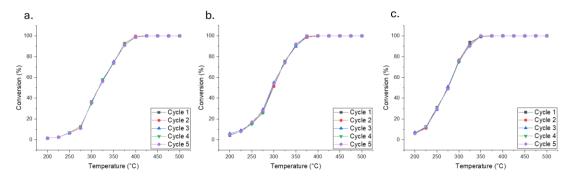


Figure S2. Stability testing for the catalysts synthesised by chemical vapour impregnation showing propane conversion as a function of temperature over multiple tests. A. 1.0 Wt% Pd/Al₂O₃ b. 2.5% Wt% Pd/Al₂O₃ c. 5.0 Wt% Pd/Al₂O₃ Reaction conditions: 1000 ppm propane/10% O₂/N₂, Gas Hourly Space Velocity (GHSV) 50,000 h⁻¹, Temperature range 200 – 500 °C.

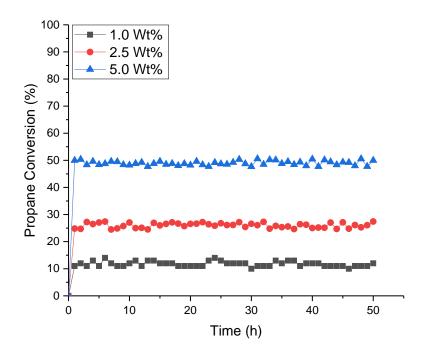


Figure S3. 50 hour time on line study the catalysts synthesised by chemical vapour impregnation showing propane conversion as a function of time. Reaction conditions: 1000 ppm propane/10% O_2/N_2 , Gas Hourly Space Velocity (GHSV) 50,000 h⁻¹, Temperature 275 °C.

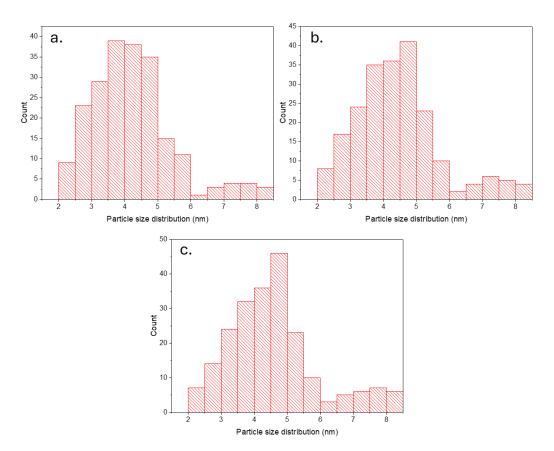


Figure S4. Palladium nanoparticle size distribution for catalysts synthesised by chemical vapour impregnation a. 1.0 Wt% Pd/Al_2O_3 b. 2.5 Wt% Pd/Al_2O_3 c. 5.0 Wt% Pd/Al_2O_3

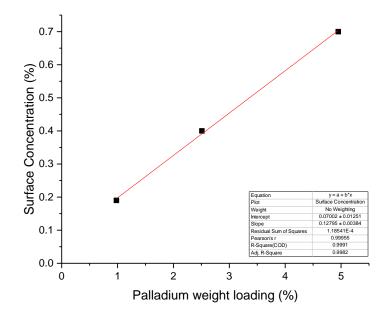


Figure S5. Figure demonstrating the linear relationship between the palladium weight loading calculated by MP-AES, and the surface concentration of palladium (calculated from XPS data), for catalysts synthesised by CVI.

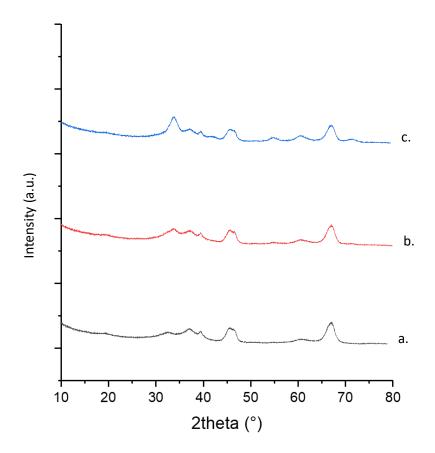


Figure S6. XRD scattering patterns of the samples synthesised by chemical vapour impregnation taken after a 50 hours time on line reaction. a. 1.0 Wt% Pd/Al_2O_3 b. 2.5% Pd/Al_2O_3 c. 5.0 Wt% Pd/Al_2O_3

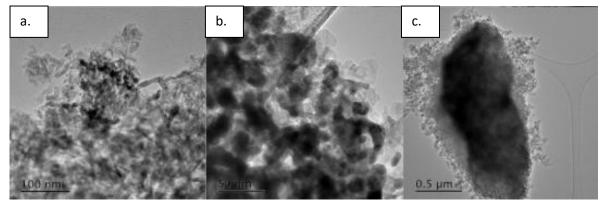


Figure S7. TEM micrographs of the catalysts prepared by wet impregnation. a. 1.0 Wt% Pd/Al₂O₃, b. 2.5 Wt% Pd/Al₂O₃, c. 5.0 Wt% Pd/Al₂O₃

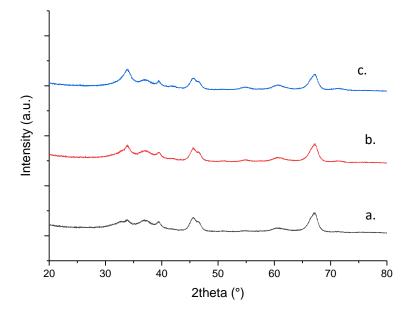


Figure S8. XRD scattering pattern for catalysts synthesised by wet impregnation. (a.) 1.0 Wt% Pd/Al_2O_3 , (b.) 2.5 Wt% Pd/Al_2O_3 and (c.) 5.0 Wt% Pd/Al_2O_3 catalysts.

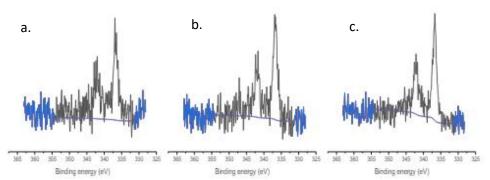


Figure S9. Pd 3d core-level XPS spectra for (a.) 1.0Wt.% Pd/Al_2O_3 , (b.) 2.5Wt.% Pd/Al_2O_3 and (c.) 5.0Wt.% Pd/Al_2O_3 catalysts synthesised by wet impregnation.

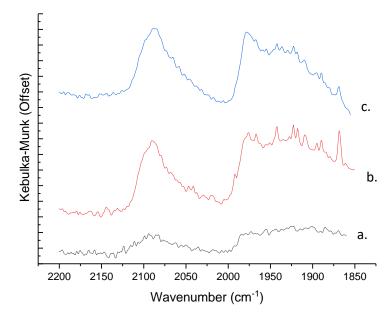


Figure S10. DRIFT spectra of CO adsorbed at room temperature for (a.) 1.0 Wt% Pd/Al₂O₃, (b.) 2.5 Wt% Pd/Al₂O₃ and (c.) 5.0 Wt% Pd/Al₂O₃ catalysts for samples synthesised by wet impregnation.