Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Novel FeVO₄ catalyst modified with NbTiO_x for efficient

selective catalytic reduction of NO_x with NH₃

Xin Shen^{a,b}, Zhihua Lian^{a,c,*}, Jiaxin Sheng^a, Chunxi Lin^a, Hui Zhang^a, Wenpo Shan^{a,c} and Hong He^{a,c,d}

^a Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^b Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^c Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^d State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

*Corresponding Authors: E-mail: zhlian@iue.ac.cn (Z. Lian)

Catalyst characterizations

The relative content of each element in the samples was analyzed using an X-ray fluorescence (XRF) analysis PANalytical Axios-MAX spectrometer. Powder X-ray diffraction (XRD) patterns were measured on a PANalytical X'Pert Pro diffractometer with Cu K α radiation operating at 40 kV and 40 mA. The data for 2 θ ranging from 10° to 90° were collected with the step size of 0.02°.

The specific area of catalysts was measured by N_2 adsorption-desorption analysis using Quantachrome Autosorb iQ2 instrument cooled by liquid N_2 at -196°C. Prior to the N_2 physisorption, the samples were degassed under vacuum at 300°C for 1 h for analysis. The surface area was determined using the BET model, while the pore structure was determined using the Barrett-Joyner-Halenda (BJH) method.

The surface morphology of catalysts was measured by transmission electron microscopy (TEM, FEI Tecnai G2 F20).

Hydrogen temperature-programmed reduction (H₂-TPR) analysis was performed using the Auto Chem II instrument by Micromeritics. The samples (100 mg) underwent pretreatment at 300°C in a quartz reactor under 50% Ar/He (60 mL/min) for 0.5 h and cooled down to room temperature, followed by 10% H₂/Ar (50 mL/min) purging for 1 h. The H₂-TPR was performed from room temperature to 1000°C in 10% H₂/Ar gas flow at a rate of 50 mL/min and a heating rate of 10°C·min⁻¹.

The X-ray Photoelectron Spectroscopy (XPS) was tested on an ESCALAB 250 XI (ThermoFisher Scientific) using Al K α radiation (1486.6 eV). To ensure accurate measurements, a calibration is performed using the C1s peak (BE=284.8 eV) as standard. The full spectrum pass energy is 100 eV, and the high-resolution spectrum pass energy is 20 eV.

The temperature programmed desorption of NH₃ (NH₃-TPD) were carried out using a fixed-bed quartz flow reactor and a Fourier transform infrared gas analyzer. Prior to the TPD experiments, the samples weighing 300 mg were subjected to pretreatment at 400°C in a flow of 20% O_2/N_2 (300 mL/min) for 30 min, followed by cooling to room temperature. Then the catalysts were treated with 300 mL/min 20% NH₃/N₂ at 30°C for 1 h, and the physical adsorption was flushed by N₂ purge at room temperature. The temperature was then gradually raised from room temperature to 650°C at a rate of 2°C·min⁻¹.

In situ Diffuse reflectance infrared Fourier transform spectroscopic (*in situ* DRIFTS) experiments were recorded on a Thermo Fisher FTIR spectrometer (Vertex 80V) equipped with an MCT detector. Before every measurement, all catalysts were pretreated in 20% O_2/N_2 with a total flow rate of 300 mL/min at 450°C for 30 min, and subsequently cooled down to 200°C. Then the background spectra were collected under a flowing N₂ atmosphere. DRIFTS experiments of NH₃ or NO + O₂ adsorption were conducted by exposing catalysts to NH₃ or NO + O₂ at 200°C until the absorbed bands became stable and then were purged under N₂ for 1 h at a flow rate of 300 mL/min. For the sample pre-adsorbed with NH₃ at 200°C, NO+O₂ was added. For the sample pre-adsorbed with NO+O₂ at 200°C, NH₃ was added. *In situ* DRIFTS spectra of the reaction were recorded respectively.

In order to collect DRIFTS spectra of NH₃ adsorption on different catalysts at different temperatures, the samples were cooled down to 150° C, 250° C and 350° C after pretreating, and the background spectra were collected under a flowing N₂ atmosphere respectively. Then the DRIFTS experiments of NH₃ adsorption were conducted by exposing catalysts to NH₃ at 150° C, 250° C and 350° C respectively until the absorbed bands became stable and then were purged under N₂ for 1 h at a flow rate of 300

mL/min. All spectra were recorded by accumulating 64 scans with a resolution of 4 $\rm cm^{-1}$.

Results and discussion

Fig. S1. NH₃-SCR activity of 3FeV/NbTi and 3FeV/TiO₂. Reaction conditions: [NH₃] = [NO] = 500 ppm, [H₂O] = 5 vol.%, [O₂] = 5 vol.%, N₂ balance, and GHSV=100,000 h⁻¹.

Fig. S2. Sulfur resistance of 9FeV/NbTi catalyst at 250°C. Reaction conditions: $[NH_3] = [NO] = 500 \text{ ppm}, [SO_2] = 300 \text{ ppm}, [O_2] = 5 \text{ vol.}\%, N_2 \text{ balance, and GHSV=100}, 000 \text{ h}^{-1}.$

Fig. S3 The HR-TEM diagrams of FeVO₄, NbTi composite oxide and 9FeV/NbTi

catalysts

Fig. S4. DRIFT spectra of NH₃ adsorption on FeVO₄, 9FeV/NbTi catalysts at 150°C, 250° C and 350° C.

Samples	Fe/V ratio	Nb/Ti ratio	$m(Fe_2O_3+V_2O_5)/m(Nb_2O_5+TiO_2)$ (%)
FeVO ₄	1.14		_
15FeV/NbTi	1.17	0.29	14.93%
9FeV/NbTi	1.03	0.25	10.55%
6FeV/NbTi	0.97	0.22	7.04%
NbTi		0.30	—

Table S1. The proportion of different elements in the as-prepared catalysts ^a

^a The ratio as calculated from powder X-ray fluorescence results.

Table S2. The H₂ consumption of NbTi composite oxide and *x*FeV/NbTi catalysts

Samples	H_2 consumption (µmol/g)			
Sumpres	<602°C	>602°C	Total	
FeVO ₄	1734		1734	
15FeV/NbTi	159	236	395	
9FeV/NbTi	136	203	339	
6FeV/NbTi	95	164	259	
NbTi	—	229	229	