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S1 Characterization

The performance of the catalyst is significantly influenced by its pore structure. 

X-ray diffraction (XRD) was employed with Cu Kα radiation (λ = 1.5405 Å), scanning 

2θ angles from 10 to 90° at a speed of 2°/min, using a 30 mA tube current and 40 kV 

tube voltage. Micromeritics ASAP-2020 surface area analyzer was utilized for catalyst 

surface area analysis. Prior to testing, catalyst samples were vacuum-degassed at 250 

°C for 3 hours, followed by N2 adsorption-desorption at -196 °C to obtain BET surface 

area and pore volume, with pore size distribution determined using the BJH method. 

Raman analysis, conducted on a Renishaw spectrometer with a laser wavelength of 532 

nm, explored surface defects over a range of 200 to 900 cm-1. CO2-TPD, crucial for 

investigating catalyst surface basicity, was performed using a Micromeritics AutoChem 

2920 chemisorption analyzer. XPS, based on the photoelectric effect, facilitated 

qualitative and semi-quantitative/quantitative elemental and chemical state analysis of 

solid surfaces, utilizing a PHI 5000 CESCA System with Al/Mg anode, operating at 

14.0 kV and 250 W, with vacuum conditions better than 1×10-8 Torr. Binding energy 

was calibrated with C 1s ＝ 284.6 eV as the reference. In-situ FTIR, crucial for 
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capturing intermediate species and elucidating reaction mechanisms, employed a 

Bruker instrument featuring a highly sensitive MCT detector. Prior to experimentation, 

samples underwent pretreatment at 300 °C in high-purity Ar, followed by cooling to 50 

°C and background correction under Ar. Subsequently, a mixed gas (4% H2, 1% CO2, 

95% Ar) was introduced for CO2 hydrogenation testing, with a gas flow rate of 20 

mL/min, ramping from 50 °C to 400 °C to monitor dynamic changes in intermediate 

species until reaching a steady state.

S2. Supplementary Figure

Figure S1. N2 adsorption and desorption of the Ni/CaCe catalysts.
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Figure S2. Surface O2
-/O2

-+O2-) molar ratios versus Ce3+/(Ce3++Ce4+) ratios on the Ni/CaCe 

catalysts. (a) Ni/CeO2, (b)Ni/CaCe-IM, (c) Ni/CaCe-SG.
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S3. Supplementary Table

Table S1 Quantitative results of O2
- surface oxygen vacancies.

Supports I570/I460

(×10-2)
I1068/I460

(×10-2)

CeO2 0.8 1.2

CaCe-IM 1.2 1.5

CaCe-SG 4.6 4.4

Table S2 Quantitative results of XPS 

Relative amount (%)  

Catalysts O2
- a CO3

2- a O2- a

O2
-/

(O2
-+O2-) a

(%)

Ce3+/
(Ce3++Ce4+)a 
(%)

M/
(Ce+M) 
molar 
ratio b

Ni/CeO2 17.5 14.4 68.1 20.3 19.1 -
Ni/CaCe-IM 16.3 35.3 48.4 26.0 23.6 0.096

Ni/CaCe-SG 28.1 24.6 47.3 39.3 29.6 0.091
a Measured by XPS.  

b Measured by ICP.

Table S3 Quantitative results of the activation energy and reaction rate 

Catalysts
Rw

a (250 oC)

[10-3 mmol s-1g-1]

RS
b (250 oC)

[10-4 mmol s-1 m-2]

Ea
c

[kJ mol-1]

Ni/CeO2 3.0 1.4 111

Ni/CaCe-IM 6.6 3.9 104

Ni/CaCe-SG 11.6 6.9 82
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Table S4 Quantitative results of H2-TPD 

Table S5 Quantitative results of CO2-TPD 

Catalysts

Weak alkaline

site amount

(μmol m-2)

Moderate alkaline

site amount

(μmol m-2)

Total amount 

below 450 oC

(μmol m-2)

Ni/CeO2 1.2 1.1 2.3

Ni/CaCe-IM 1.3 1.9 3.1

Ni/CaCe-SG 1.9 2.5 4.5

Catalysts
Ni 

contents
(wt%) a

H2 

desorption 
amount 

(μmol g-1)

Metallic Ni
surface area

(m2 gNi
-1) b

Dispersion
(%) b

TOF CO2

(s-1) c

Ni/CeO2 9.3 38.8 20.8 2.5 0.03

Ni/CaCe-IM 9.2 50.8 26.5 3.1 0.07

Ni/CaCe-SG 9.2 60.9 31.8 3.9 0.10
aDetermined by ICP. 
bPt/Al2O3 (D = 34.5%) was used as the standard. Based on the cross-sectional 
area of one surface Ni atom, 8.24 × 10-20 m2.
cCalculated based on the steady state CO2 conversion at 250 oC.
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Table S6 A literature summary of Ni-based catalysts in CO2 methanation
Reaction condition

Entry Catalysts
Ni% 

(wt%)
SBET 

(m2/g)

T 

(oC)

P 

(bar)

GHSV

(mL/gcat h)

CO2

conver
sion 
(%)

Ref

1 2Ni-2Co /CeO2 2 - 290 1 12000 5 [1]

2 2Ni-2Mn/CeO2 2 - 290 1 12000 4 [1]

3 Ni/CeO2-10 10 27.9 275 1 30000 28 [2]

4 NiCe/ZrO2 10 5.2 350 1 18000 48 [3]

5 NiLa/ZrO2 10 6 350 1 18000 37 [3]

6 Ni/CeO2 10 84 350 1 18000 55 [3]

10 NiO/CeO2 10 - 300 1 36000 58 [4]

11 Ni/CeO2-NR 8 72 300 1 16500 68 [5]

12 10NiCe 10 - 300 1 72000 71 [6]

13 Ni/CeO2 2 31 275 1 30000 32 [7]

14 Ni/CeO2-NR 8 72 275 1 30000 79 [8]

15 Ni/CaCe-SG 10 26 290 1 18000 77
This 

wok
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