Oxygen Vacancy-Dependent Low-Temperature Performance of Ni/CeO² in CO² Methanation

Luliang Liao b, t, Kunlei Wang ^{a, t}, Guangfu Liao^{c*}, Muhammad Asif Nawaz ^{d*}, Kun Liu a*

^a School of Resources and Environment, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China

^b Jiangxi Science Technology Normal University, Nanchang, Jiangxi, China

^c College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

^d Department of Inorganic Chemistry and Material Sciences Institute of Seville (ICMSE), University of Seville-CSIC, Seville 41092, Spain

* Corresponding author. E-mail: liaogf@mail2.sysu.edu.cn (G. Liao), mnawaz@us.es (M. A. Nawaz), liukun@ncu.edu.cn (K. Liu)

† These authors contributed equally

Content

S1 Characterization

The performance of the catalyst is significantly influenced by its pore structure. X-ray diffraction (XRD) was employed with Cu K α radiation (λ = 1.5405 Å), scanning 2θ angles from 10 to 90° at a speed of $2^{\circ}/$ min, using a 30 mA tube current and 40 kV tube voltage. Micromeritics ASAP-2020 surface area analyzer was utilized for catalyst surface area analysis. Prior to testing, catalyst samples were vacuum-degassed at 250 °C for 3 hours, followed by N₂ adsorption-desorption at -196 °C to obtain BET surface area and pore volume, with pore size distribution determined using the BJH method. Raman analysis, conducted on a Renishaw spectrometer with a laser wavelength of 532 nm, explored surface defects over a range of 200 to 900 cm⁻¹. CO₂-TPD, crucial for investigating catalyst surface basicity, was performed using a Micromeritics AutoChem 2920 chemisorption analyzer. XPS, based on the photoelectric effect, facilitated qualitative and semi-quantitative/quantitative elemental and chemical state analysis of solid surfaces, utilizing a PHI 5000 CESCA System with Al/Mg anode, operating at 14.0 kV and 250 W, with vacuum conditions better than $1\times10-8$ Torr. Binding energy was calibrated with C 1s = 284.6 eV as the reference. In-situ FTIR, crucial for

capturing intermediate species and elucidating reaction mechanisms, employed a Bruker instrument featuring a highly sensitive MCT detector. Prior to experimentation, samples underwent pretreatment at 300 °C in high-purity Ar, followed by cooling to 50 °C and background correction under Ar. Subsequently, a mixed gas (4% H_2 , 1% CO₂, 95% Ar) was introduced for $CO₂$ hydrogenation testing, with a gas flow rate of 20 mL/min, ramping from 50 °C to 400 °C to monitor dynamic changes in intermediate species until reaching a steady state.

S2. Supplementary Figure

Figure S1. N₂ adsorption and desorption of the Ni/CaCe catalysts.

Figure S2. Surface O_2 - O_2 + O^2 - $)$ molar ratios versus $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ ratios on the Ni/CaCe catalysts. (a) Ni/CeO₂, (b)Ni/CaCe-IM, (c) Ni/CaCe-SG.

S3. Supplementary Table

Supports	I_{570}/I_{460} $({\times}10^{-2})$	I_{1068}/I_{460} $({\times}10^{-2})$
CeO ₂	0.8	1.2
$CaCe-IM$	1.2	1.5
$CaCe-SG$	4.6	4.4

Table S1 Quantitative results of O_2 surface oxygen vacancies.

Table S2 Quantitative results of XPS

	Relative amount $(\%)$			O ₂	$Ce^{3+}/$	M/ $(Ce+M)$
Catalysts	O_2 ^{-a}	$CO32-a$	Q^{2-a}	$(O_2+O^{2})^a$ $\left(\frac{0}{0}\right)$	$(Ce^{3+}+Ce^{4+})^a$ (%)	molar ratio ^b
Ni/CeO ₂	17.5	14.4	68.1	20.3	19.1	
$Ni/CaCe-IM$	16.3	35.3	48.4	26.0	23.6	0.096
Ni/CaCe-SG	28.1	24.6	47.3	39.3	29.6	0.091

^a Measured by XPS.

b Measured by ICP.

Table S3 Quantitative results of the activation energy and reaction rate

	$R_{\rm w}^{\rm a}$ (250 °C)	$R_{\rm S}^{\rm b}$ (250 °C)	$E_{\rm a}^{\rm c}$
Catalysts		$[10^{-3}$ mmol s ⁻¹ g ⁻¹] [10 ⁻⁴ mmol s ⁻¹ m ⁻²]	[kJ mol ⁻¹]
Ni/CeO ₂	3.0	1.4	111
Ni/CaCe-IM	6.6	3.9	104
Ni/CaCe-SG	11.6	6.9	82

Catalysts	Ni contents $(wt\%)$ ^a	H ₂ desorption amount (μ mol g ⁻¹)	Metallic Ni surface area $(m^2 g_{Ni}^{-1})^b$	Dispersion $(\%)^b$	TOF_{CO2} $(s^{-1})^c$		
Ni/CeO ₂	9.3	38.8	20.8	2.5	0.03		
Ni/CaCe-IM	9.2	50.8	26.5	3.1	0.07		
Ni/CaCe-SG	9.2	60.9	31.8	3.9	0.10		

Table S4 Quantitative results of H₂-TPD

^aDetermined by ICP.

 bPt/Al_2O_3 (D = 34.5%) was used as the standard. Based on the cross-sectional area of one surface Ni atom, 8.24×10^{-20} m².

 c Calculated based on the steady state CO₂ conversion at 250 c .

	Weak alkaline	Moderate alkaline	Total amount
Catalysts	site amount	site amount	below 450 $\rm{^{\circ}C}$
	(μ mol m ⁻²) (μ mol m ⁻²)		(μ mol m ⁻²)
Ni/CeO ₂	1.2	1.1	2.3
$Ni/CaCe-IM$	1.3	1.9	3.1
Ni/CaCe-SG	19	2.5	4.5

Table S5 Quantitative results of CO₂-TPD

			Reaction condition				CO ₂	
Entry	Catalysts	$Ni\%$ $(wt\%)$	S_{BET}	T	${\bf P}$	GHSV	conver sion	Ref
			(m^2/g)	$(^{\circ}C)$	(bar)	(mL/g _{cat} h)	$(\%)$	
$\mathbf{1}$	$2Ni-2Co/CeO2$	$\overline{2}$		290	$\mathbf{1}$	12000	5	$[1]$
$\overline{2}$	$2Ni-2Mn/CeO2$	$\overline{2}$	$\qquad \qquad -$	290	$\mathbf{1}$	12000	4	$[1]$
3	$Ni/CeO2-10$	10	27.9	275	$\mathbf{1}$	30000	28	$[2]$
4	NiCe/ZrO ₂	10	5.2	350	1	18000	48	$[3]$
5	NiLa/ZrO ₂	10	6	350	$\mathbf{1}$	18000	37	$[3]$
6	Ni/CeO ₂	10	84	350	$\mathbf{1}$	18000	55	$[3]$
10	NiO/CeO ₂	10	$\overline{}$	300	1	36000	58	[4]
11	$Ni/CeO2-NR$	8	72	300	1	16500	68	$[5]$
12	10NiCe	10	$\qquad \qquad -$	300	$\mathbf{1}$	72000	71	[6]
13	Ni/CeO ₂	$\overline{2}$	31	275	1	30000	32	$[7]$
14	$Ni/CeO2-NR$	8	72	275	$\mathbf{1}$	30000	79	[8]
15	Ni/CaCe-SG	10	26	290	1	18000	77	This
								wok

Table S6 A literature summary of Ni-based catalysts in $CO₂$ methanation

S4. References

- 1. C. G. Wasnik, M. Nakamura, T. Shimada, H. Machida, K. Norinaga, *Carbon Resources Conversion*, 2024, 100241.
- 2. L. Li, L. Jiang, D. Li, J. Yuan, G. Bao, K. Li, *Appl. Catal. O: Open,*2024*,* **192**, 206956.
- 3. R. A. El-Salamony, K. Acharya, A. S. Al-Fatesh, A. I. Osman, S. B. Alreshaidan, N. S. Kumar, H. Ahmed, R. Kumar, *Mol. Catal.,* 2023**, 547**, 113378.
- 4. I. Martínez-López, J. C. Martínez-Fuentes, J. Bueno-Ferrer, A. Davó-Quiñonero, E. Guillén-Bas, E. Bailón-García, D. Lozano-Castelló, A. Bueno-López, *J. CO² Util.*, **81**, 102733.
- 5. G. Varvoutis, A. Lampropoulos, P. Oikonomou, C.-D. Andreouli, V. Stathopoulos, M. Lykaki,G. E. Marnellos, M. Konsolakis, *J. CO² Util.,* 2023, **70**, 102425.
- 6. L. Atzori, M. G. Cutrufello, D. Meloni, F. Secci, C. Cannas, E. Rombi, *Int. J. Hydrogen Energy,* 2023, **48**, 25031-25043.
- 7. N. García-Moncada, J. C. Navarro, J. A. Odriozola, L. Lefferts, J. A. Faria, *Catal. Today*, 2022, **383**, 205-215.
- 8. G. Varvoutis, M. Lykaki, S. Stefa, E. Papista, S. A. C. Carabineiro, G. E. Marnellos, M. Konsolakis, *Catal. Commun.*, 2020, **142**, 106036.