Study of promoted Cu/ZnO and Cu/ZrO $_2$ catalysts for dimethyl adipate hydrogenolysis

Jaroslav Aubrecht^{1*}, Violetta Pospelova¹, Sharmistha Saha¹, Miloslav Lhotka², Iva Paterová³, David Kubička¹

¹ Department of Sustainable Fuels and Green Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic

² Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic

³ Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic

*Corresponding author: Jaroslav Aubrecht, aubrechj@vscht.cz, +420 220 443 811

Evaluation of the support effect in XRF analysis

To evaluate the effect of ZrO_2 and ZnO during the XRF, the physical mixtures of 10% CuO and 90% of ZrO_2 or ZnO were prepared from the standard chemicals. When the sample was 3-times measured the average composition was estimated (Table SI1). From this there is a clear observation that CuO content is overestimated.

Table SI1.: Average com	position of phy	vsical mixtures.
-------------------------	-----------------	------------------

	Average composition, CuO	Average composition, support
10% CuO and 90 % ZnO	10.3 %	89.7 %
10% CuO and 90 % ZrO_2	11.0 %	89.0%

	1st peak	2nd peak
Cu/ZrO_2_DP	38%	62%
$CuZn/ZrO_2_DP$	23%	77%
$CuNi/ZrO_2_DP$	53%	47%
CuCo/ZrO ₂ DP	40%	60%

Table SI2.: Ratio of deconvoluted peaks for ZrO₂-based catalysts.

Figure SI1.: Comparison of theoretical and measured hydrogen consumption during TPR-H₂.

Figure SI2.: Pore size distribution and adsorption-desorption hysteresis of (A) ZnO-supported and (B) ZrO₂-supported catalysts.

Figure SI3.: TPD-CO₂ of (A) ZnO-based catalysts and (B) ZrO₂-based catalysts.

Figure SI4.: TPD-pyr of (A) ZnO-based catalysts and (B) ZrO₂-based catalysts.

Figure SI5.: FTIR spectra of the spent catalysts and pure HDOL and DMA compounds.

Figure SI6.: The stability test results (DMA conversion and HDOL selectivity) for Cu/ZrO_2 _DP catalyst for 28 h at 220°C and 100 bar.

Sample name	DMA conversion (%) at t = 0h	DMA conversion (%) at t = 8h
Cu/ZrO ₂ _DP	9	9
CuZn/ZrO ₂ DP	7	8
CuNi/ZrO ₂ _DP	12	10
CuCo/ZrO ₂ _DP	15	15
Cu/ZnO_DP	51	49
CuAl/ZnO_DP	23	21
CuNi/ZnO_DP	6	5

Table SI3.: The change in DMA conversion after 8h of experiment; T=220°C, p=100 bar