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Computational details

DFT-1/2 is based on Slater's half-occupation technique, with the -1/2 

denoting an intermediate position between the initial ground state and the 

ionized state.1-2 The DFT-1/2 method introduces the computed atomic self-

energy potential into solids, where it is incorporated into the 

pseudopotential as a common pseudopotential for calculating electronic 

structures.3-4 The self-energy potential requires correction before its 

introduction. The self-energy potential's reach is primarily constrained by 

the cutoff radius rcut. The potential is trimmed by a function as

                   S(1)
Θ = { [1 ‒ ( 𝑟

𝐶𝑈𝑇)𝑛]3, 𝑟 ≤ 𝐶𝑈𝑇

0                           , 𝑟 > 𝐶𝑈𝑇�
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Since rcut is variable, selecting an appropriate value for rcut results in 

the maximum presentation of the bandgap, where the correction is 

maximized. In this work, we determine the appropriate rcut for the atoms 

through testing. We set the parameter n to 8, a value also used in other 

articles.

The formation energy of all the structures are evaluated by the 

following formula:

                             S (2)

𝐸𝑓 =

𝐸𝑡𝑜𝑡𝑎𝑙 ‒ ∑
𝑖

𝑛𝑖𝜇𝑖

∑
𝑖

𝑛𝑖

where  and  represent the total energy and the number of i-th 𝐸𝑡𝑜𝑡𝑎𝑙 𝑛𝑖

atom of the structures in a unit cell, and is the cohesive energy of the i-𝜇𝑖 

th atom in its bulk crystal.

The calculation formula of plane-averaged charge density differences 

 is as follow:∆𝜌(𝑧)

          S (3)
∆𝜌(𝑧) = 𝜌𝐴𝑙2𝑆2𝑆𝑒 ‒ 𝑡 ‒ 𝜌𝐴𝑙 ‒ 𝜌𝑆 ‒ 𝜌𝑆𝑒

        S (4) 
∆𝜌(𝑧) = 𝜌𝐴𝑙2𝑇𝑒𝑆𝑒2 ‒ 𝑡 ‒ 𝜌𝐴𝑙 ‒ 𝜌𝑇𝑒 ‒ 𝜌𝑆𝑒

The formula for calculating the photoabsorption coefficient ( ), 𝛼𝜔

denoted as (S5), incorporates the frequency (ω), with ( ) and ( ) 𝜀' 𝜔 𝜀'' 𝜔

representing the real and imaginary parts of the dielectric function, 

respectively. These parameters were obtained using the HSE06 hybrid 

functional.



   S (5)
𝛼𝜔 =

2𝜔
2 [ (𝜀'(𝜔))2 + (𝜀''(𝜔))2 ‒ 𝜀'(𝜔)]1/2

The Gibbs free energy change (△G) in the water redox reactions is 

defined as:

                     S (6)∆𝐺 = ∆𝐸 + ∆𝐸𝑍𝑃𝐸 ‒ 𝑇∆𝑆

where ΔE, ΔEZPE, and ΔS represent the energy difference of adsorption, 

zero-point energy and entropy, respectively. T is system temperature (298 

K).

The OWS process comprises two half-reactions: HER, which involves 

a two-electron reaction, and OER, which is a four-electron reaction in an 

acidic solution. The OER process can be written as:

Step 1:       S (7)∗+ 𝐻2𝑂⟶ ∗ 𝑂𝐻 + 𝑒 ‒ + 𝐻 +

Step 2:           S (8)∗ 𝑂𝐻⟶ ∗ 𝑂 + 𝑒 ‒ + 𝐻 +

Step 3:    S (9)∗ 𝑂 + 𝐻2𝑂⟶ ∗ 𝑂𝑂𝐻 + 𝑒 ‒ + 𝐻 +

Step 4:          S (10)∗ 𝑂𝑂𝐻⟶𝑂2 + 𝑒 ‒ + 𝐻 +

The HER process can be described as:

Step 1:               S (11)       ∗+ 𝐻 + + 𝑒 ‒ ⟶ ∗ 𝐻

Step 2:           S (12)   ∗ 𝐻 + 𝐻 + + 𝑒 ‒ ⟶𝐻2

   Then, the △G for OER are achieved as:

Step 1:         S (13)
∆𝐺 = 𝐺 ∗ 𝑂𝐻 +

1
2

𝐺𝐻2
‒ 𝐺𝐻2𝑂 ‒ 𝐺 ∗ ‒ 𝑈ℎ

Step 2:               S (14)
∆𝐺 = 𝐺 ∗ 𝑂 +

1
2

𝐺𝐻2
‒ 𝐺 ∗ 𝑂𝐻 ‒ 𝑈ℎ



Step 3:       S (15)
∆𝐺 = 𝐺 ∗ 𝑂𝑂𝐻 +

1
2

𝐺𝐻2
‒ 𝐺𝐻2𝑂 ‒ 𝐺 ∗ 𝑂 ‒ 𝑈ℎ

Step 4:         S (16)
∆𝐺 = 𝐺 ∗ +

1
2

𝐺𝐻2
+ 𝐺 ∗ 𝑂 ‒ 𝐺 ∗ 𝑂𝑂𝐻 ‒ 𝑈ℎ

The △G for HER is calculated by:

                      S (17)
∆𝐺 = 𝐺 ∗ 𝐻 ‒

1
2

𝐺𝐻2
‒ 𝐺 ∗ ‒ 𝑈𝑒

the  of 2D materials can be expressed as the following equation: 5-6𝜇𝛼

                              S (18)
𝜇𝛼 =

𝑒ℏ3𝐶𝛼

𝑘𝐵𝑇|𝑚 ∗
𝛼 |𝑚𝑑(𝐸 𝑙

𝛼)2

                                S (19)
𝐶𝛼 =

2
𝑆0

∂2𝐸𝑡𝑜𝑡𝑎𝑙

∂(∆𝑙𝛼/𝑙0
𝛼)2

                                     S (20)
𝐸 𝑙

𝛼 =
Δ𝐸𝑘𝑠

Δ𝑙𝛼/𝑙0
𝛼

Here, e denotes the electron charge,  represents the reduced Planck ℏ 

constant, kB stands for the Boltzmann constant, T denotes the temperature 

(set to T = 300K),  corresponds to the effective mass in the α direction 𝑚 ∗
𝛼

of the material without strain (where α is either the x or y direction),  is 𝑚𝑑

the average effective mass ( ).  denotes the elastic 𝑚𝑑 = 𝑚 ∗
𝑥 𝑚 ∗

𝑦 𝐶𝛼

modulus, with  represents the area of the optimized 2D unit cell without 𝑆0

strain,  represents the total energy of the system,  corresponds to 𝐸𝑡𝑜𝑡𝑎𝑙 𝑙0
𝛼

the lattice constant without strain, and  signifies the change in lattice Δ𝑙𝛼

constant. The deformation potential is calculated as S (18).



Other supplementary contents

The HSE06 Hybrid functionals typically yield more accurate 

bandgaps, but their computational demands are higher.1 The DFT-1/2 

method, introduced in recent years as a correction function for DFT, 

mitigates the problem of underestimated bandgaps in standard DFT by 

rectifying the self-energy of valence band holes, all while maintaining 

rapid computational speed. 3, 7 Previously, DFT-1/2 has successfully 

predicted the bandgaps of various semiconductor materials, ranging from 

metal oxides to halide perovskites, with accuracy comparable to GW but 

at lower computational cost.8 In this work, the computational results 

indicate that, except for Al2S2Te-t and Al2TeS2-m, the Eg of other materials 

calculated with PBE are approximately 0.8 eV smaller than those obtained 

with HSE06, while the difference between the HSE06 band gap and the 

DFT-1/2 corrected Eg is around 0.2 eV. Considering the fast computation 

speed and extremely low cost of the DFT-1/2 method, for large systems 

with similar structures, we can use the DFT-1/2 method to evaluate the Eg. 

The significant difference in Eg predicted for Al2S2Te-t and Al2TeS2-m 

monolayers using the HSE06 and DFT-1/2 methods may be due to their 

metallic nature as predicted by PBE.



Fig. S1. The unit cells of Al2S3 and Al2Se3 monolayers.

Tab. S1. The lattice constant (a), formation energy (Ef), band gap (Eg), and electrostatic 
potential difference ( ) of other 10 types of Al2X2X' monolayers except for Al2S2Se-t and ∆Φ

Al2TeSe2-m.

a(Å)  𝐸𝑓

(eV/atom)
(eV)/ 𝐸𝑔 

PBE
(eV)/ 𝐸𝑔 

DFT-1/2
(eV)/ 𝐸𝑔 

HSE06
∆Φ

Al2S2Te-t 3.750 -0.896 — 0.211 1.195 0.165
Al2TeS2-m 3.70 -0.841 — 0.829 0.403 1.892
Al2S2Te-b 3.774 -0.864 1.791 2.415 2.465 2.285
Al2S2Se-t 3.638 -1.108 1.154 2.091 1.839 2.230
Al2SeS2-m 3.618 -1.084 1.427 2.178 2.202 2.202
Al2S2Se-b 3.640 -1.096 2.431 3.360 3.255 2.287
Al2Se2S-t 3.692 -1.009 1.813 2.653 2.575 2.123
Al2SSe2-m 3.716 -1.035 1.679 2.595 2.361 2.109
Al2Se2S-b 3.691 -1.020 1.237 2.219 1.973 2.075
Al2Se2Te-t 3.891 -0.795 0.253 1.050 0.807 1.584
Al2TeSe2-m 3.854 -0.762 0.522 1.323 1.157 1.714
Al2Se2Te-b 3.900 -0.779 1.959 2.377 2.728 1.999



Fig. S2. The electronic band structures of Al2S3 and Al2Se3 monolayers at the HSE06 level.

Fig. S3 (a-f). The electronic band structures of Al2S2Se-t, Al2S2Se-b, Al2SeS2-m, Al2S2Te-t, 
Al2S2Te-b and Al2TeS2-m monolayers at the HSE06 level.



Fig. S4 (a-f). The electronic band structures of Al2Se2S-t, Al2Se2S-b, Al2SSe2-m, Al2Se2Te-t, 
Al2Se2Te-b and Al2TeSe2-m monolayers at the HSE06 level.

Fig. S5 (a-b) The PDOS of Al2S3 and Al2Se3 monolayers at the HSE06 level

Fig. S6 (a-e) The PDOS of Al2S2Se-t, Al2S2Te-t, Al2TeS2-m, Al2Se2Te-t and Al2TeSe2-m 

monolayers at the HSE06 level.



Fig. S7. The band alignment relative to the water redox potentials for Al2S3 and Al2Se3 monolayers.

Fig. S8. The electrostatic potentials, Fermi level and work functions of Al2S3, Al2SeS2-m, 
Al2S2Se-b, Al2S2Te-t, Al2TeS2-m and Al2S2Te-b monolayers along the Z-direction.



Fig. S9. The electrostatic potentials, Fermi level and work functions of Al2Se3, Al2Se2Te-t, 
Al2Se2Te-b, Al2Se2S-t, Al2SSe2-m and Al2Se2S-b monolayers along the Z-direction.

Table S2. The overpotentials χ(H2) and χ(O2), energy conversion efficiency of light absorption (

), carrier utilization efficiency ( ), STH efficiency ( ), and corrected STH ( ).𝜂𝑎𝑏𝑠 𝜂𝑐𝑢 𝜂𝑆𝑇𝐻 𝜂 '
𝑆𝑇𝐻

𝜒𝐻2
𝜒𝑂2

𝜂𝑎𝑏𝑠 𝜂𝑐𝑢 𝜂𝑆𝑇𝐻 𝜂 '
𝑆𝑇𝐻

Al2S3 1.723 2.297 8.5% 38.5% 3.3% 3.1%
Al2Se3 1.570 1.577 21.0% 43.6% 9.2% 8.0%
Al2S2Te-t 1.668 -1.538 76.6% 1.2% 0.9% 0.9%
Al2TeS2-m 1.320 -0.255 99.3% 46.0% 45.7% 20.2%
Al2S2Te-b 1.870 1.650 18.9% 42.9% 8.1% 7.0%
Al2S2Se-t 1.664 1.176 44.2% 51.6% 22.8% 16.1%
Al2SeS2-m 1.729 1.382 28.2% 46.2% 13.0% 10.5%
Al2S2Se-b 1.827 2.484 3.3% 35.0% 1.1% 1.1%
Al2Se2S-t 1.691 1.777 15.6% 41.6% 6.5% 5.9%
Al2SSe2-m 1.765 1.474 22.4% 44.1% 9.9% 8.4%
Al2Se2S-b 1.553 1.254 38.0% 49.5% 18.8% 14.3%
Al2Se2Te-t 1.199 -0.038 90.7% 42.1% 38.2% 20.6%
Al2TeSe2-m 1.305 0.336 78.8% 49.9% 39.3% 25.9%
Al2Se2Te-b 1.865 1.632 11.4% 39.9% 4.5% 4.3%



Fig. S10. The Gibbs free energy change diagrams for the OER and HER on the Al2S3 and Al2Se3 
monolayers.

Fig. S11. Phonon band structure of Al2S2Se-t and Al2TeSe2-m monolayers.

Tab. 2. Effective mass , elastic modulus , deformation potential , and carrier mobility 𝑚 ∗
𝛼 𝐶𝛼 𝐸 𝑙

𝛼

 of Al2S2Te-b, Al2SeS2-m, Al2S2Se-b, Al2Se2S-t, Al2SSe2-m, Al2Se2S-b, Al2Se2Te-t and 𝜇𝛼

Al2Se2Te-b mnolayers.

𝑚 ∗
𝛼 (𝑚𝑒)  (eV)𝐸 𝑙

𝛼  𝐶𝛼
(J/m2)  (cm2/(s*V))𝜇𝛼

Material Direction
e h e h h=e e h

Al2S2Te-b x 0.61 0.73 2.50 11.45 161.43 1415.96 50.90



y 0.65 0.68 3.09 11.98 176.17 951.44 54.09
x 0.62 6.44 3.69 8.99 232.21 1200.39 3.28Al2SeS2-m y 0.38 1.31 6.63 9.92 241.97 625.72 13.79
x 0.66 2.20 3.21 6.30 210.00 1123.81 18.24Al2S2Se-b y 0.51 3.59 5.73 7.45 223.97 493.91 8.53
x 0.62 8.49 3.78 8.23 212.34 1054.75 1.57Al2Se2S-t y 0.37 2.95 6.14 9.46 222.30 694.38 3.59
x 0.63 2.32 3.92 10.12 190.54 849.83 9.98Al2SSe2-m y 0.38 1.26 6.76 10.75 206.41 513.74 17.74
x 1.05 1.60 3.81 8.38 215.23 327.41 11.98Al2Se2S-b y 0.81 7.26 7.01 10.63 225.58 130.85 1.72
x 0.78 1.48 10.53 11.72 179.12 76.88 17.25Al2Se2Te-t y 0.42 0.80 11.42 12.37 190.85 130.43 30.50
x 1.10 2.64 3.44 5.50 189.11 186.41 19.21Al2Se2Te-b y 2.52 2.60 5.69 7.82 202.25 31.80 10.33
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