Supplementary Information for

## Advancing Catalysis Research through FAIR Data Principles Implemented in a Local Data Infrastructure - A Case Study of an Automated Test Reactor

Abdulrhman Moshantaf,<sup>1</sup> Michael Wesemann,<sup>1</sup> Simeon Beinlich,<sup>1</sup> Heinz Junkes,<sup>1</sup> Julia Schumann,<sup>1,2</sup> Baris Alkan,<sup>1,3</sup> Pierre Kube,<sup>1</sup> Clara Patricia Marshall,<sup>1</sup> Nils Pfister<sup>1</sup> and Annette Trunschke\*<sup>1</sup>

<sup>1</sup>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, D-14195 Berlin, Germany

<sup>2</sup>Consortium FAIRmat, c/o Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany

<sup>3</sup>Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34 - 36, 45470 Mülheim an der Ruhr, Germany

\*trunschke@fhi-berlin.mpg.de

## Automation tools and experimental details

*AC/CATLAB Archive.* The AC-Archive is based on PHP scripts and a MySQL database, which ensures scalability and flexibility.<sup>1</sup> The data is stored on a central storage system (Netapp) that has multiple backups, which increases the protection of the data. The Application Programming Interface (API), which is also programmed in the PHP programming language, is constantly being expanded to improve the programmatic reading and writing of the database.<sup>1</sup>

*S3 storage.* An S3 storage is used to store experimental data for long-term backup, with each instrument having its own bucket to which all files are uploaded at the end of an experiment; this can also be done automatically via an API provided for the S3 storage.

*EPICS.* EPICS is an open-source control system that is widely used in large facilities such as synchrotron sources and other beam lines, but can also be used for automation of small laboratory setups.<sup>2, 3</sup> The software can run on any operating system and any platform and provides the necessary tools and utilities to operate, monitor and control experiments. The advantage of EPICS lays in the possibility to connect several computers and input-output controllers (IOCs) based on the server/client model using the channel access protocol. The server, which is normally the IOC, is responsible for controlling the hardware devices and collecting the data. An automatic backup is performed by an archiver appliance instance in the FHI network without interruption (online 24/7). In this way, all the information about the devices and the data of the process variables (PVs) are continuously available via the network. The client, on the other hand, which can be any computer connected on the network, can access these information by reading, writing and monitoring the PVs remotely using EPICS tools.

Using EPICS as a control system allows connection to all types of hardware devices and provides a small database record within the IOC for each PV in the hardware devices. The records can be accessed via the Ethernet using the channel access protocol, which provides the put command to write a value to the record and the get command to read values from the records. To fully automate the writing and reading of values to or from the records, Python scripts can be written. However, to access the EPICS records from Python, some libraries such as the Ophyd library,<sup>4</sup> which offers a hardware abstraction for the devices in Python, are used. The library allows to define the PVs from a certain device as an EPICS signal where its information can be accessed using simple commands like "read" or "set". The EPICS signals can be grouped into an Ophyd device which can be defined as a class in Python and with that, similar devices can be defined easily as an object of that class just by giving different PV names. In general, Ophyd is associated with Bluesky,<sup>5</sup> where Bluesky manages the experiment and takes advantage of Ophyd's functions to communicate with the hardware devices and collect their data.

Bluesky is a Python library that provides functions to harmonize the control of an experiment with the collecting of data and metadata in one place.<sup>5</sup> It features real time processing and plotting of the acquired data, and allows implementation of user-defined plans and commands that are triggered automatically and sequentially. A simple plan would be to read a detector value for a specific number of times, but more complex and adaptive plans can also be handled, such as setting target values to the instruments and waiting for a specific condition to occur, while in the meantime reading all data from the detectors.

The most important part of Bluesky is the run engine. This is where the plan is initiated and it manages the workflow of the plan by allowing the plan to be paused, resumed or aborted any time, it is also responsible for streaming the acquired data and metadata from the experiment as JSON dictionaries with a specific structure.<sup>5</sup> The run engine can subscribe to callback functions that can perform, for example, a specific processing task on the collected and streamed data from the run

engine in real time and store the results in a specific format. Such a callback function was used in the present automation of a catalytic test reactor to extract the data from the streamed JSON dictionary and putting it in HDF5 and CSV files. When the experiment is finished, the Python script automatically uploads the generated files to the database (AC/CATLAB archive) in two steps. First, the files can be uploaded to a specific S3 bucket for long-term backup storage using the "minio client" API in Python for S3 storage, then an URL link can be generated for the uploaded files to allow the files to be uploaded to the AC/CATLAB archive using the API, which is implemented in the database.

Another backup solution is the EPICS archiver appliance.<sup>3</sup> It can archive the values of PVs for 24 hours even if the experiment is not running, it is very expandable and scalable by adding more resources to it, so it can store a large number of PVs, configuring the archiver or retrieving the stored data is easy using web interfaces or python scripts.

*Phoebus*. Phoebus is a Java variant of the control system's Studio program that is used to design graphical user interfaces for monitoring and controlling experiments, as it allows easy reading of process variables provided by EPICS via the channel access protocol and place them in drag and drop widgets like text updates, gauges, plots, tables, etc.<sup>6</sup>

*Python and Jupyter notebooks*. Python is used writing scripts responsible for running experiments and acquiring data, using libraries that provide access to the EPICS PVs within the Python script. This makes it possible to automatically send a set of setpoints to the hardware devices based on the method chosen, and also allows data analysis and conversion to be done within the script functions. Jupyter notebooks are used to write scripts for interactive GUIs that allow the user to enter meta and method data for their experiment. The user can also log into the Jupyter hub, which

can be used by anyone at the FHI. The Jupyter hub gives users the ability to write their own Python scripts on the web and run them from anywhere.

*Catalyst test reactor.* The reactor for rapid tests in ammonia decomposition ("Haber") is a fully enclosed, ventilated system constructed at the Fritz-Haber-Institut (FHI) (schematic representation in Fig. 3 in the main text). In the setup, a vertical reactor oven (HTM Reetz GmbH, type LOBA vertikal) is used to heat a tubular quartz reactor (QSIL GmbH, inner diameter 7 mm, length 400 mm) filled with the catalyst. For the experiment, 41.7 mg of catalyst (particle size of 200-300  $\mu$ m) is mixed with 83.4 mg of SiC (ESK-SiC Gmbh, 355-400  $\mu$ m) and placed inside the tube. The catalyst bed is stabilized by quartz wool at both ends of the isothermal zone of the oven (Fig. S1). A thermocouple (Electrotherm, thermoelement type K) connected to a Pico TC-8 (Pico Technology, tech data logger type TC-8) is inserted at the center of the catalyst bed and is used to record and control the reaction temperature. In addition, the oven temperature is monitored using a second thermocouple placed in the oven.

Six mass flow controllers (Bronkhorst, type El-Flow) are connected to the setup to enable gas stream of various gases including central gases of Ar, H<sub>2</sub>, O<sub>2</sub> and N<sub>2</sub> (5.0, Westfalen AG) and NH<sub>3</sub> (5.0, Westfalen AG). Downstream the reactor, a thermal conductivity detector (TCD, Xensor, type XEN-5320) is connected and used to monitor hydrogen concentration during the reduction stage in H<sub>2</sub>/Ar gas mixtures. To remove water formed during reduction of the catalyst, a molsieve trap (Molsieve 5A, sieve size >355  $\mu$ m) is inserted before the TCD. A separate gas line is used to stream NH<sub>3</sub>. An ammonia detector (IR detector, Rosemount, type Binos 1.2) is used to detect the residual concentration of NH<sub>3</sub>. Before entering the detector, the effluent gas from the reactor is diluted with flowing nitrogen in a constant ratio of 225 ml/min N<sub>2</sub> /25 ml/min NH<sub>3</sub>. A two-position actuator control module (Vici, Valco Instruments Co. Inc., 4 port 2-pos valve with electric motor) is used

to change the gas flow direction and to switch between the detectors. A pressure gauge connected downstream the reactor (Swagelok, 0-10 bar) is used to monitor the pressure drop over the catalyst bed. The NH<sub>3</sub>-containing outlet gases are passed through a bottle (polypropylene) filled with water before they enter the exhaust gas. All catalytic tests are performed according to a SOP presented in Fig. 1 b of the main text.

A computer system (Jetway, JBC390F841CA) with 10 serial ports is used to allow communication with the serial devices. This input-output controller (IOC) also has 2 Ethernet ports as it serves as a gateway between the setup and the FHI network. The EPICS control software runs on this computer system and takes control of the hardware devices.

On the desktop computer of the setup (DELL, OPTIPLEX 7020), the graphical user interfaces and the Jupyter notebooks (Python scripts) to control and operate the setup are running. It is also where the data collected and the files generated from the experiment are initially stored.

## Catalyst preparation

The Ni catalyst precursor Ni<sub>x</sub>Mg<sub>1-x</sub>O (x: 0.034, S36283) was prepared using a computer-controlled co-precipitation in an automatic work station (Mettler Toledo, Optimax 1001, E5). A metal salt solution was prepared dissolving Mg(NO<sub>3</sub>)<sub>2</sub>·  $6H_2O$  (126.76 g) and Ni(NO<sub>3</sub>)<sub>2</sub>·  $6H_2O$  (3.59 g) in 500 ml H<sub>2</sub>O. Another solution of 75 ml of NH<sub>3</sub> (25 %) dissolved in 1000 ml DI H<sub>2</sub>O was prepared, and both solutions were dosed at a rate of 10 g/min in 200 mL H<sub>2</sub>O at 60 °C and aged for 1h at pH=8.5. The product was filtered and washed three times with 360 mL mqH<sub>2</sub>O. The product was centrifugated at 5000 rpm for 15 min, and the solid was dried at 80 °C overnight. 3 g of the solid was calcined at 600 °C for 3 hours with a heating rate of 2 K/min in a rotating furnace (XERION, UTP Carbon). The calcined precursor oxide was pressed at three tons for three minutes and sieved to 200-300 micron.



**Fig. S1.** (a) Temperature profile of the Haber reactor, and (b) ammonia decomposition over a 2.5 % Ni/MgO (S36891) as a function of temperature and time.

| Haber Archive v1.0.179                                                                                |                                      | chive v1.0.179                                                                                                                         |                                                             |                                                                  | Search:                                                  | S82                                                            |                                        | NEW SEARCH MORE TAGS LOGOUT HOME                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User: mo                                                                                              | shantaf Role:                        | user Type: Idap                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Mada dat                                                                                              | -                                    |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| netada                                                                                                | Ld.                                  | 2 a a 2 b 4 =                                                                                                                          |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Action                                                                                                | 1                                    |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Deee                                                                                                  |                                      | 382<br>C02 C04 C05 C08 C07                                                                                                             |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Desce                                                                                                 | endants:                             | 583, 584, 585, 586, 587                                                                                                                |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| User                                                                                                  |                                      | moshantat                                                                                                                              |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Proje                                                                                                 | Ct                                   | DEFAULT                                                                                                                                |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Acces                                                                                                 | 55                                   | project                                                                                                                                |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Open<br>Edit U                                                                                        | Access                               |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Date                                                                                                  | Created                              | 2024.05.24.19:49:02                                                                                                                    |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Date                                                                                                  | Medified                             | 2024-05-24 10:40:03                                                                                                                    |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Date                                                                                                  | vioumeu                              | 2024-05-50 15:04:15                                                                                                                    |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Data                                                                                                  |                                      |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Name                                                                                                  |                                      | Ni2.5%-MgO precursor                                                                                                                   |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Prepa                                                                                                 | rator                                | C. Marshall                                                                                                                            |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Sourc                                                                                                 | e                                    | FHI                                                                                                                                    |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Samp<br>Descr                                                                                         | le<br>ription                        | pale green solid                                                                                                                       |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Solution A was preps<br>NH3 (25%) in 1000 n<br>Inputs=1A and 2B. T<br>through even the 15/<br>pH=8,5. |                                      | Solution A was prepared by d<br>NH3 (25%) in 1000 mL mgH2<br>Inputs=1A and 2B. The produ<br>through even the 15A filter, bi<br>pH=8,5. | lissolving N<br>O. In the C<br>Ict was filte<br>ig beakers, | /lg(NO3)2 (C1<br>Optimax, A (30<br>ered once (15/<br>5000 rpm, 1 | 50 - 126,76<br>00 g) and B<br>A) and then<br>5 min. Cond | g) and Ni(No<br>(300 g) were<br>washed 3 tin<br>ductivity last | O3)2 (<br>e dosed<br>mes wit<br>washin | 580 - 3,5911 g) in 500 mL mqH2O. Solution B was prepared by dissolving 75 mL of<br>I at constant rate (10 g/min) in 200 mL mqH2O, at 60°C, aged for 1 h. Pumps=70%,<br>h 360 mL mqH2O, separated by centrifugation as solid was too fine and passing<br>g= 0,06 mS/cm Dried at 80°C overnight. During the synthesis, the pH stayed around |
| Date o<br>Prepa                                                                                       | of<br>tration                        | 2022-08-03                                                                                                                             |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Amou<br>Produ                                                                                         | Amount of<br>Product 4,9838 g        |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Yield                                                                                                 | (%)                                  |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Method of<br>Proparation                                                                              |                                      | precipitation #optimax                                                                                                                 |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Locat                                                                                                 | ion of                               |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Samp                                                                                                  | le                                   |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Speci<br>Preca                                                                                        | al<br>utions                         |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Cross<br>Referent<br>Litera                                                                           | ence to<br>ture                      |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Drying<br>Proce                                                                                       | )<br>dure                            | Static air cabinet at 80 C                                                                                                             |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| State                                                                                                 | of Sample                            | •                                                                                                                                      |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Eleme                                                                                                 | ents                                 | Ni, Mg                                                                                                                                 |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Json D                                                                                                | ata                                  |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| {<br>}                                                                                                | "SampleID                            | ": "582"                                                                                                                               |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| Files (3                                                                                              | )                                    |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| ld                                                                                                    |                                      | File                                                                                                                                   | T                                                           | lime                                                             | Comment                                                  | Size                                                           | Action                                 |                                                                                                                                                                                                                                                                                                                                           |
| 817                                                                                                   | Experimen                            | nt 2022-02-09 10-15.iControl                                                                                                           | 2024-05-                                                    | 24 18:48:03                                                      |                                                          | 11.8 Mb                                                        |                                        |                                                                                                                                                                                                                                                                                                                                           |
| 818                                                                                                   | 818 Experiment 2022-08-03 10-52.xlsx |                                                                                                                                        | 2024-05-                                                    | 24-05-24 18:48:03 638.8 Kb                                       |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| 819 Experiment 2022-08-03 10-52_Report.pdf                                                            |                                      |                                                                                                                                        | 2024-05-                                                    | 24 18:48:04                                                      |                                                          | 148.3 Kb                                                       | ٢                                      |                                                                                                                                                                                                                                                                                                                                           |
| Linked                                                                                                | Entries                              |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| ld                                                                                                    | Project                              |                                                                                                                                        |                                                             |                                                                  |                                                          |                                                                | Actio                                  | n                                                                                                                                                                                                                                                                                                                                         |
| S90                                                                                                   | DEFAULT                              | Nickel(II) nitrate hexahydrate                                                                                                         |                                                             | Alfa Aesar                                                       |                                                          |                                                                | Ô                                      |                                                                                                                                                                                                                                                                                                                                           |
| E88                                                                                                   | DEFAULT                              | Optimax Synthesis Workstation                                                                                                          |                                                             | Marshall                                                         |                                                          |                                                                | Ô                                      |                                                                                                                                                                                                                                                                                                                                           |
| C1                                                                                                    | DEFAULT                              | Magnesium nitrate hexahydrate                                                                                                          | e (empty)                                                   | Magnesiumn                                                       | iumnitrat Hexahydrat (empty)                             |                                                                |                                        |                                                                                                                                                                                                                                                                                                                                           |
| D114                                                                                                  | DEFAULT                              | ATR-IR Measurement S82                                                                                                                 |                                                             | C. Marshall                                                      |                                                          |                                                                | Ô                                      |                                                                                                                                                                                                                                                                                                                                           |
| D115                                                                                                  | DEFAULT                              | XRD of S82 C. Marshall, F. Girgsdies                                                                                                   |                                                             |                                                                  |                                                          |                                                                | Ô                                      |                                                                                                                                                                                                                                                                                                                                           |

**Fig. S2.** Sample entry of the precipitated catalyst precursor in the example database that has been used in the ammonia decomposition experiment after calcination, pressing and sieving displaying ancestries and descendants of the sample.

|       |               |                                       |           |               |            | Metho                 | d Edito       | r           |          |             |            |             |                     |
|-------|---------------|---------------------------------------|-----------|---------------|------------|-----------------------|---------------|-------------|----------|-------------|------------|-------------|---------------------|
|       |               | Header                                |           |               |            |                       |               |             |          |             |            |             |                     |
|       |               | Method Name: HAB                      | ER_050224 |               | Use        | er Name: Bar          | s Alkan       |             |          |             |            |             |                     |
|       |               | Temporal resolution:                  | 1.00      | Hz            | Inn        | er diameter of reacto | r (D): 7.00   | mm          |          |             | NH3 Detec  | tor         |                     |
|       |               | Sieve fraction analyte low:           | 200.00    | μm            | Par        | tical size (Dp):      | 0.25          | mm          | ļ        | At 10 vol.  | % NH3 :    | 10.00       |                     |
|       |               | Sieve fraction analyte high:          | 300.00    | μm            | Rat        | io of (D/Dp):         | 28.00         |             |          |             |            |             |                     |
|       |               | Diluent material:                     | SiC 🗸 🗸   |               | Cat        | alyst Mass:           | 100.000       | mg          | Ļ        | At 0 vol. % | 6 NH3 :    | 0.73        |                     |
|       |               | Diluent sieve fraction low:           | 355.00    | μm            | Bul        | k Volume:             | 0.00          | 0.00 min    |          |             |            | Update List |                     |
|       |               | Diluent sieve fraction high:          | 400.00    | μm            |            |                       |               |             | Load     | Method:     | Spinel CoA | NI2O4 - 🔍   |                     |
|       |               | Recipe entry                          |           |               |            |                       |               |             |          |             |            |             |                     |
|       |               | Setpoint:                             | 800.00    | deg           | NH3_Hig    | n: 0.00               | % WIF         |             | 0.06     | gs/ml       |            |             |                     |
|       |               | Ramprate:                             | 2.00      | deg C/min     | NH3_Low    | 0.00                  | % space veloc | ity (WHSV): | 60000.00 | gh/ml       | ADD        |             |                     |
|       |               | Dwell Time:                           | 60.00     | min           | N2:        | 0.00                  | *             |             |          |             |            |             |                     |
|       |               | Equalibration Time:                   | 2.00      | min           | Ar:        | 80.00                 | *             |             |          |             | Simulate   |             |                     |
|       |               | Gas Flow                              | 100.00    | mln/min       | H2·        | 20.00                 | 2             |             |          |             | Save       |             |                     |
|       |               |                                       | 100.00    |               |            | 20.00                 |               |             |          |             |            |             |                     |
| 9 9   | ÷]⇒[¤]∎]      | H I                                   |           |               |            |                       |               |             |          |             |            |             |                     |
| Stage | Equalibration | Time [min] Setpoint [C <sup>*</sup> ] | Ramprate  | C*/min] Dwell | fime (min) | Gas Flow [mln/m.      | NH3_High [%]  | NH3_Low[%]  | N2[%]    | Ar[%]       | H2[%]      | W[F [gs/ml] | Space velocity [gh/ |
| 1     | 2.00          | 600.00                                | 2.00      | 60.00         |            | 100.00                | 0.00          | 0.00        | 0.00     | 80.00       | 20.00      | 0.06        | 60000.00            |
| 2     | 2.00          | 400.00                                | 2.00      | 10.00         |            | 100.00                | 0.00          | 0.00        | 0.00     | 80.00       | 20.00      | 0.06        | 60000.00            |
| 3     | 60.00         | 450.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 4     | 0.00          | 500.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 5     | 0.00          | 550.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 6     | 0.00          | 600.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 7     | 0.00          | 550.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 8     | 0.00          | 500.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 9     | 0.00          | 450.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 10    | 0.00          | 400.00                                | 2.00      | 60.00         |            | 600.00                | 10.00         | 0.00        | 90.00    | 0.00        | 0.00       | 0.10        | 36000.00            |
| 11    | 0.00          | 30.00                                 | 5.00      | 0.00          |            | 60.00                 | 0.00          | 0.00        | 0.00     | 100.00      | 0.00       | 0.08        | 45000.00            |
| Click |               |                                       |           |               |            |                       |               |             |          |             |            |             |                     |
|       |               |                                       |           |               |            |                       |               |             |          |             |            |             |                     |
|       |               |                                       |           |               |            |                       |               |             |          |             |            |             |                     |
|       |               |                                       |           |               |            |                       |               |             |          |             |            |             |                     |

Fig. S3. The method editor GUI for creating new methods and saving them digitally in the database.



**Fig. S4.** The operator GUI is a read-only GUI for displaying historical and live plots as well as the status of the experiment and the read-back values from the devices.

|                                 | н                       | aber-P                   | V-Cor              | ntrol                        |                  |                                                |
|---------------------------------|-------------------------|--------------------------|--------------------|------------------------------|------------------|------------------------------------------------|
| 2 MFC                           | PICO Data Logger        | тср                      |                    |                              |                  | Eurotherm 3216                                 |
| Flow percentage: 0.000 % Plot   | INPUT TEMP UNIT         | Device Name              | Factory ID Firm    | ware version Measurment Mode | Measurment Speed | Setopint:                                      |
| Flow percentage Setpoint: 0.0 % | 1 Votag0.0273 deg C     | 10G348                   | 106348             | 3.2.8 H2                     | Standard         | Cerpoint.                                      |
| Flow Counter: 0.000 In Plot     |                         | Sensitivity              | TC Transfer        | AH1 AH2                      | AH3              | Temp: 0 C                                      |
| Flow Counter Limit: 0.000       | 2 Voltag • 0.7284 deg C | -1.930000                | 250.000000         | -0.002450 0.000075           | -0.000000        |                                                |
| 2 MFC                           | 3 Votag - 0.0224 deg C  | Y AH CAL                 | TF CAL Tem         | nperature Cal Gain           |                  | Ramprate: 0.000 0.000 C                        |
| Now percentage: 0.000 % Plot    |                         | 0.999853                 | 29.560648          | 24.706268 0.991781           | UPDATE           |                                                |
| low percentage Setpoint: 0.0%   | 4 Votag - 0.0201 deg C  |                          |                    |                              |                  | Standby Operation                              |
| ne Counter Limit: 0.000         | K • 23.2558 deg C       | Mode                     | Speed              | Zero Calibration             | Cale Calibration |                                                |
|                                 | 22 5050 day C           | H2 👻                     | Standard 👻         | 2ero Calibration             | Gain Calibration | VALVE 1                                        |
| ow percentages 0.000 % Dire     |                         | SE                       | τ                  |                              |                  |                                                |
| ow percentage Setpoint: 0.0%    | 7 K • 23.0204 deg C     |                          |                    |                              |                  | Parities A Parities                            |
| ow Counter: 0.000 In Plat       | K v 23.5980 deg C       | Output                   | 36.894916          | Thermocounie:                | 0.017950 mV      | (from NH3 to (from Ar t<br>Detectors) Detector |
| w Counter Limit: 0.000          |                         |                          |                    |                              |                  |                                                |
| 13_30 MFC                       |                         | Transfer:                | 15.325361 V        | W Heater Current:            | 0.001285 mA      |                                                |
| w percentage: 0.000 % Pict      |                         | pt100 temperature:       | 0.000000 C         | * Heater Voltage:            | 0.910792 mV      | В                                              |
| ow percentage Setpoint: 0.0 %   |                         | Temp senserion:          | 24.536972 G        | * Heater Power:              | 0.001172 mW      |                                                |
| w Counter: 0.000 In Plat        |                         | Rel Humidity:            | 8.224487 %         | 6 V Supply:                  | 3.286733 V       | VALVE 2                                        |
| w Counter Limit: 0.000          |                         | Abs Humidity:            | 0.252877           | Da Battery Voltage           | 0.000000 M       |                                                |
| MFC                             |                         | Plus Hamary.             |                    | outry totage.                |                  | Position A Position I                          |
| w percentage: 0.000 % Plot      |                         | Corrected Transfer:      | 0.518794           |                              |                  | (Bypass) (To React                             |
| w percentage Setpoint: 0.0 %    |                         | H2 concentration (output | ut): 28.673542 %   |                              |                  |                                                |
| w Counter: 0.000 In Plot        |                         | H2 concentration (trans  | fer): 29.470896 95 |                              |                  | A                                              |
| w Counter Limit: 0.000          |                         |                          |                    |                              |                  |                                                |
| 13_300 MFC                      |                         |                          |                    |                              |                  | VALVE 3                                        |
| w percentage: 0.000 % Plot      |                         |                          |                    |                              |                  |                                                |
| ow percentage Setpoint: 0.0 %   |                         |                          |                    |                              |                  |                                                |
| ow Counter Limit: 0.000         |                         |                          |                    |                              |                  | Position A (To NH3<br>(To TCD)                 |
|                                 |                         |                          |                    |                              |                  | Detector                                       |
|                                 |                         |                          |                    |                              |                  |                                                |
|                                 |                         |                          |                    |                              |                  | A                                              |
|                                 |                         |                          |                    |                              |                  |                                                |

Fig. S5. PV-Control GUI for configuring all connected hardware devices.

| III\ ⊦ | laber | Archive | v1.0.179 |
|--------|-------|---------|----------|
|--------|-------|---------|----------|

| User: m  | oshantaf Ro     | ole: user Type: Idap                |                           |                     |                  |         |          |        |
|----------|-----------------|-------------------------------------|---------------------------|---------------------|------------------|---------|----------|--------|
| Metada   | ita             |                                     |                           |                     |                  |         |          |        |
| Action   | n               | 🖉 👁 🕼 🖏 🐿 🛍                         |                           |                     |                  |         |          |        |
| ld       |                 | D99                                 |                           |                     |                  |         |          |        |
| User     |                 | moshantaf                           |                           |                     |                  |         |          |        |
| Proje    | ct              | DEFAULT                             |                           |                     |                  |         |          |        |
| Acces    | 5 <b>S</b>      | project                             |                           |                     |                  |         |          |        |
| Open     | Access          |                                     |                           |                     |                  |         |          |        |
| Edit H   | listory         | SHOW                                |                           |                     |                  |         |          |        |
| Date     | Created         | 2024-05-24 18:48:57                 |                           |                     |                  |         |          |        |
| Date     | Modified        | 2024-05-28 18:13:08                 |                           |                     |                  |         |          |        |
| Data     |                 |                                     |                           |                     |                  |         |          |        |
| Title    |                 | S84 Haber NH3 Decomposition -       | 2.5 Ni-MgO                |                     |                  |         |          |        |
| Autho    | or              | B. Alkan, C. Marshall               | •                         |                     |                  |         |          |        |
| Com      | nent            | 41.7 mg 2.5 % Ni:MgO 200-300 r      | nicron 83.4 mg SiC 355-44 | 0 micro             | on Hadboook prot | ocol    |          |        |
| Keyw     | ords            |                                     |                           |                     |                  |         |          |        |
| Docu     | ment Type       | RAW DATA                            |                           |                     |                  |         |          |        |
| Metho    | ods             |                                     |                           |                     |                  |         |          |        |
| Eleme    | ents            | Ni, Mg, O                           |                           |                     |                  |         |          |        |
| Samp     | ole Numbe       | er                                  |                           |                     |                  |         |          |        |
| Json Da  | ata<br>"haber": | { 12 items }                        |                           |                     |                  |         |          |        |
| Files (4 | .)              | File                                |                           |                     | Time             | Comment | Size     | Action |
| 1263     | 2022-11-2       | 1 10 56 35 S84 B Alkan Allstage     | V CSV                     | 202                 | 1-05-28 17:51:28 | commont | 5.3 Mb   | 3      |
| 1264     | 2022-11-2       | 1 10.56.35 S84 B Alkan Separat      | ed. Stanes viev           | 2024 05 20 17:51:20 |                  |         | 3.4 Mb   |        |
| 1266     | 2022-11-2       | 1 10.56.35 S84 B Alkan Ammonia      | Decomposition Report of   |                     |                  |         | 358 5 Kh | ٩      |
| 1267     | 2022-11-2       | 1 10.56.35 S84 B Alkan h5           | 202                       |                     | 1-05-28 18:10:13 |         | 23.1 Mb  |        |
| 1201     | 2022 112        | 1_10.00.00_004_D: / inditiio        |                           | 202                 | 103 20 10.10.13  |         | 20.1110  |        |
| Linked   | Entries         |                                     |                           |                     |                  |         |          |        |
| ld       | Project         |                                     | 4                         | Action              |                  |         |          |        |
| S84      | DEFAULT         | Sieve fraction of S83 (2.5 % Ni-MgO | ) M. Ertegi               |                     |                  |         |          |        |
| E80      | DEFAULT         | Haber Reactor (since 01.01.2022)    | B. Alkan, A. B. Ngo       |                     |                  |         |          |        |
| G16      | DEFAULT         | Ammonia 5.0                         | Ammoniak 5.0              | Ô                   |                  |         |          |        |
| D100     | DEFAULT         | NH3 decomp. 28102022_Nr3 Metho      | d                         | Ô                   |                  |         |          |        |
| S86      | DEFAULT         | Spent of S84 (2.5 % Ni-MgO)         | B. Alkan, C. Marshall     | Ô                   |                  |         |          |        |

**Fig. S6.** Result data entry in the example database generated from Haber after using the catalyst 2.5%Ni-MgO in the experiment; The data entry contains the generated files with the raw data of the experiment, the method data saved as JSON and the pdf report of the experiment; The sample entries of the sieve fraction and the spent catalyst, the equipment (Haber reactor), the gases and the method which has been used are all linked to the result data entry.

## References

- 1. M. Wesemann, AC archive, <u>https://github.com/fhimpg/archive</u> (accessed 2024/05/31).
- 2. Getting started with EPICS, <u>https://docs.epics-controls.org/en/latest/getting-started/EPICS\_Intro.html</u>, (accessed 2024/05/31).
- 3. EPICS Archiver, <u>https://slacmshankar.github.io/epicsarchiver\_docs/details.html</u>, (accessed 2024/05/31).
- 4. Ophyd Index, <u>https://blueskyproject.io/ophyd/index.html</u>, (accessed 2024/05/31).
- 5. Bluesky, <u>https://blueskyproject.io/bluesky/</u>, (accessed 2024/05/31).
- 6. Phoebus, <u>https://github.com/ControlSystemStudio/phoebus</u>, (accessed 2024/06/04).