Electronic Supplementary Information

Heteroatom-assisted oxygen vacancies in cerium oxide catalysts for efficient synthesis of dimethyl carbonate from CO₂ and methanol

Niladri Maity,^{a,*}Samiyah A. Al-Jendan,^a Samir Barman,^a Nagendra Kulal^a and E. A. Jaseer ^a

^aInterdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University for Petroleum & Minerals, Dhahran31261, Saudi Arabia. E-mail: niladri.maity@kfupm.edu.sa

Table of contents							
Sl. No.	Contents	Page No.					
1	Elemental microanalysis of the synthesized CeO ₂ nanomaterials	S2					
2	Crystallite size calculation from PXRD	S2					
3	Oxygen vacancy concentration data from RAMAN spectra	S 3					
4	N ₂ adsorption-desorption isotherm of CeO ₂ -NP	S3					
5	TEM image and lattice spacings of CeO ₂ -NP	S4					
6	CO ₂ -and NH ₃ -TPD plots for CeO ₂ -NP	S4					
7	O1s binding energy spectra	S 5					
8	Surface basicity and acidity data of the CeO ₂ nanomaterials	S 5					
	from CO ₂ - and NH ₃ -TPD						
9	Performances of CeO ₂ -NP, CeO ₂ -NR, S-CeO ₂ -NR, N-CeO ₂ -NR	S6-S8					
	towards the catalytic synthesis of DMC						
10	Formation of side products methyl picolinate and methyl	S8					
	carbamate during the synthesis of DMC						
11	Representative ¹ H NMR spectra of standard compounds and the	S9-11					
	reaction mixture						
12	The plot of surface acidity and basicity vs catalytic efficiency	S12					
13	Proposed reaction mechanism	S12					

Common d	Temperature	Wt.	(%)	
Compound	(°C)	Ν	S	
CeO ₂ -NR	80	-	-	
CeO ₂ -NR	600	-	-	
S-CeO ₂ -NR	80	-	0.46	
S-CeO ₂ -NR	600	-	0.18	
N-CeO ₂ -NR	80	0.30	-	
N-CeO ₂ -NR	600	0.20	-	

1. Elemental microanalysis of the synthesized ${\rm CeeO}_2$ nanomaterials

Table S1: Elemental microanalysis of cerium nanomaterials

2. Crystallite size calculation from PXRD.

Table S2: Crystallite size measured from PXRD for the CeO₂ nanomaterials.

Matorials	Crystallite size (nm)						
	(111) ^a	(111) ^a (200) ^b		(311) ^d			
CeO ₂ -NR	10.4	9.63	10.4	9.2			
S-CeO ₂ -NR	9.9	9.0	9.5	8.9			
N-CeO ₂ -NR	10.1	9.9	10.6	10.0			
CeO ₂ -NP	17.6	18.9	17.8	17.4			

Estimated from ^a(111) plane, ^b(111), ^c(111) and ^d(111) of PXRD analysis.

3. Oxygen vacancy concentration data from RAMAN spectra

Table S3: Oxygen vacancy concentrations data

Compound	Oxygen vacancy concentration (×10 ¹³ vacancies cm ⁻³)
CeO ₂ -NP	1.51
CeO ₂ -NR	4.59
S-CeO ₂ -NR	5.56
N-CeO ₂ -NR	6.34

4. N₂ adsorption-desorption isotherm of CeO₂-NP

Fig. S1 N_2 adsorption-desorption isotherm of CeO₂-NP.

5. TEM image and lattice spacings of CeO_2 -NP

Fig. S2 (a) TEM image and (b) lattice spacings for CeO₂-NP.

6. CO₂-and NH₃-TPD plots for CeO₂-NP.

Fig. S3 (a) CO₂-TPD and (b) NH₃-TPD profiles of CeO₂-NP.

7. O1s binding energy spectra

Fig. S4 O1s binding energy spectra of (a) CeO_2 -NP, (b) CeO_2 -NR, (c) S-CeO_2-NR and (d) N-CeO_2-NR.

8. Surface basicity and acidity data of the CeO₂ nanomaterials from CO₂- and NH₃-TPD

	Surface basicity ^a	Surface acidity ^b			
Materials	(Adsorbed CO ₂)	(Adsorbed NH ₃)			
	(mmol/g)	(mmol/g)			
CeO ₂ -NR	0.109	0.290			
S-CeO ₂ -NR	0.113	0.298			
N-CeO ₂ -NR	0.130	0.324			
CeO ₂ -NP	0.099	0.048			

Table S4: The basicity and acidity of the CeO_2 nanomaterials.

^aEstimated from CO₂-TPD. ^bEstimated from NH₃-TPD.

9. Performances of CeO₂-NP, CeO₂-NR, S-CeO₂-NR, N-CeO₂-NR towards the catalytic synthesis of DMC

Table S5. Effect of calcination temperature on the performances of X-CeO₂-NR catalysts.

CO ₂ + 2CH ₃ OH CO ₂ + 2CH ₃ OH Catalyst → H ₃ CO OCH ₃ Comperature → H ₃ CO OCH ₃									
Entry	Catalysts	Calcination	Dehydrating	MeOH	DMC yield		Selectivity	(%)	
		temp. (°C)	reagent	conversion	$(mm_{o})g_{cat}^{-1}$	DMC	Methyl	Methyl	
				(%)	(IIIIII01 ^o cut)		picolinate	carbamate	
1	N-CeO ₂ -NR	300	2-CP	1.2	5.7	100	0	0	
2	N-CeO ₂ -NR	500	2-CP	4.1	20.3	100	0	0	
3	N-CeO ₂ -NR	600	2-CP	22.7	113.3	100	0	0	
4	N-CeO ₂ -NR	700	2-CP	22.0	110.0	100	0	0	
5	N-CeO ₂ -NR	800	2-CP	14.3	70.7	100	0	0	
6	S-CeO ₂ -NR	300	2-CP	1.1	5.3	100	0	0	
7	S-CeO ₂ -NR	600	2-CP	9.9	49.7	100	0	0	

Reaction conditions: 100 mg catalyst, Methanol (3.20 g, 100 mmol), 2-cyanopyridine (2-CP: 5.20 g, 50 mmol), CO₂ (4 MPa), 100 °C, 2 h.The DMC yield and selectivity were estimated using ¹H NMR spectra.

Table S6. Effect of CO₂ pressure and 2-CP on the performances of N-CeO₂-NR catalyst towards DMC yield.

$CO_2 + 2CH_3OH \xrightarrow{Catalyst} H_3CO \xrightarrow{O} OCH_3$ 2-Cyanopyridine Temperature									
Entry	CO ₂ pressure	Dehydrating	MeOH	DMC yield		Selectivity ((%)		
	(MPa)	reagent	conversion (%)	$(\text{mmol} g_{cat}^{-1})$	DMC	Methyl picolinate	Methyl carbamate		
1 ^a	4	2-CP	22.7	113.3	100	0	0		
2ª	0.4	2-CP	11.0	55.2	100	0	0		
3ª	0.1	2-CP	0.2	0.8	100	0	0		
4 ^b	4	2-CP	14.9	74.5	100	0	0		
5	4	-	1.0	4.7	100	0	0		

Reaction conditions: 100 mg catalyst, Methanol (3.20 g, 100 mmol), CO₂ (4 MPa), 100°C), 2 h.The DMC yield and selectivity were estimated using ¹H NMR spectra. ^a2-cyanopyridine (2-CP: 5.20 g, 50 mmol), ^b2-cyanopyridine (2-CP: 10.4 g, 100 mmol).

$CO_{2} + 2CH_{3}OH \xrightarrow{Catalyst} H_{3}CO \xrightarrow{U} OCH_{3}$ 2-Cyanopyridine Temperature									
Entry	EntryReactionDehydratingMeOHDMC yieldSelectivity (%)								
	temp. (°C)	reagent	gent conversion		DMC	Methyl	Methyl		
			(%)	$(\text{mmol } \mathcal{G}_{cat})$		picolinate	carbamate		
1	100	2-CP	22.7	113.3	100	0	0		
2	120	2-CP	39.6	196.7	99.2	0.5	0.3		
3	140	2-CP	51.4	242.7	94.4	3.0	2.6		
4	160	2-CP	47.9	190.0	75.2	14.4	10.4		

Table S7. Effect of reaction temperature on the performances of N-CeO₂-NR catalyst.

Reaction conditions: 100 mg catalyst, Methanol (3.20 g, 100 mmol), 2-cyanopyridine (2-CP: 5.20 g, 50 mmol), CO₂ (4 MPa), 2 h.The DMC yield and selectivity were estimated using ¹H NMR spectra.

Catalyst

o

Table S8. Effect of reaction time on the performances of N-CeO₂-NR catalyst.

CO ₂ + 2CH ₃ OH → H ₃ CO OCH ₃ 2-Cyanopyridine Temperature									
Entry	EntryReactionDehydratingMeOHDMC yieldSelectivity (%)								
	time (h)	reagent	conversion	$(1, a^{-1})$	DMC	Methyl	Methyl		
			(%)	(mmol ^g cat)		picolinate	carbamate		
1	2	2-CP	22.7	113.3	100	0	0		
2	12	2-CP	42.4	207.7	97.9	0.7	1.4		
3	24	2-CP	33.6	80.7	64.9	33.4	1.7		

Reaction conditions: 100 mg catalyst, Methanol (3.20 g, 100 mmol), 2-cyanopyridine (2-CP: 5.20 g, 50 mmol), CO₂ (4 MPa), 100 °C. The DMC yield and selectivity were estimated using ¹H NMR spectra.

Table S9. Comparative catalytic efficiency of CeO_2 nanomaterials towards the yield of dimethyl carbonate from CO_2 and methanol.

CO₂ + 2CH₃OH CO₂ + 2CH₃OH 2-cyanopyridine Temp.					С Н ₃ СО	OCH₃				
Entry	Catalysts	Catalyst wt. (mg)	Methanol (mmol)	2-CP (mmol)	CO ₂ (MPa)	Temp. (°C)	Time (h)	MeOH conv. (%)	DMC Yield (mmol g_{cat}^{-1})	DMC Selectivity (%)
1	CeO ₂ -NP	100	100	50	4	100	2	0.2	0.8	100
2	CeO ₂ -NR	100	100	50	4	100	2	5.8	28.8	100
3	S-CeO ₂ -NR	100	100	50	4	100	2	9.9	49.7	100
4	N-CeO ₂ -NR	100	100	50	4	100	2	22.7	113.3	100

10. Formation of side products methyl picolinate and methyl carbamate during the synthesis of DMC

$$(1)$$

$$NH_{2} + CH_{3}OH \longrightarrow (1)$$

$$NH_{3} + H_{3}CO OCH_{3} \longrightarrow H_{3}CO H_{2} + CH_{3}OH (2)$$

Scheme S1. The proposed routes towards the formation of side products methyl picolinate and methyl carbamate during the synthesis of DMC from CO_2 and methanol in the presence of 2-cyano pyridine.

11. Representative ¹H NMR spectra of standard compounds and the reaction mixture

S10

Fig. S5 ¹H NMR spectra of (a) *p*-Xylene, (b) methanol, (c) dimethyl carbonate, (d) methyl carbamate, (e) methyl picolinate, (f) 2-cyano pyridine, (g) piconilamide, (h) N-CeO₂-NR catalyzed reaction (Table S6, Entry 1) after 2 h at 100 °C, and (i) N-CeO₂-NR catalyzed reaction (Table S6, Entry 4) after 2 h at 160 °C.

12. The plot of surface acidity and basicity vs catalytic efficiency

Fig. S6 Correlation between surface acity, surface basicity and catalytic efficiency (DMC yield) of the CeO₂ based nanocatalysts.

13. Proposed reaction mechanism

Scheme S2. Proposed reaction mechanism involving X-CeO₂-NR catalysts towards the synthesis of DMC from CO₂ and methanol.