Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

A white light-emitting diode (LED) promoted one pot synthesis of 1,2dihydropyrimido[1,2-*a*]benzimidazoles in presence of a new spiky magnetic nano catalyst and its anthelmintic studies.

George Kupar Kharmawlong^{a,b,c}, Bhusan Chettri^d, Ridashisha Rymbai^e, Ridaphun Nongrum^b, Arun Kumar Yadav^d, Surya Bhan^e and Rishanlang Nongkhlaw^{a*}

^aDepartment of Chemistry, Centre for Advances studies in Chemistry, North-Eastern Hill University, India, Meghalaya, Shillong-793022.

^bDepartment of Chemistry, Sankardev College, India, Meghalaya, Shillong-793004

^c Department of Science, North East Adventist University, Khliehtyrshi, Meghalaya-793151.

^dDepartment of Zoology, North-Eastern Hill University, India, Meghalaya, Shillong-793022.

^dDepartment of Biochemistry, North-Eastern Hill University, India, Meghalaya, Shillong-793022.

Table of Content	Page No
General procedure for the synthesis of 1,2-dihydropyrimido[1,2- <i>a</i>]benzimidazoles and its derivatives	2
Analytical Data of the synthesized compounds 4 (a-e), 6 (a-n) and 8 (a-e)	2-12
¹ H and ¹³ C NMR Spectra of the synthesized compounds 4 (a-e), 6 (a-n) and 8 (a-e)	13-36
Tables of anthelminthic studies	3-40

Gmail: <u>rlnongkhlaw@nehu.ac.in</u>

General procedure for the synthesis of 1,2-dihydropyrimido[1,2-*a*]benzimidazoles and its derivatives:

A mixture of aromatic aldehyde (1 mmol), 2-aminobenzimidazole/ 4*H*-1,2,4-triazol-3-amine (1 mmol), and active methylene compounds (malononitrile/ ethylacetoacetate/ methylacetoacetate) (1 mmol) was taken in a round bottom flask (100 mL) containing 25 mL of water and 14 mg of spiky Ni-nanoparticles was added under stirring condition at room temperature (25 °C). The reaction mixture was kept under direct irradiation of white LED light for appropriate time. After completion of the reaction (monitored by TLC), the catalyst was recovered by an external magnet and the products was filtered and recrystallized from ethanol to obtain the pure product.

Analytical data:

2-amino-4-phenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3carbonitrile (4a)

White solid, melting point: 234-236 °C [Lit¹. 235-236 °C]; IR (KBr): v_{max} 3442, 3320,3061,2882, 2190, 1682, 1632, 1602, 1471, 1352, 1248, 1029 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.60 (s,1H), 7.63 (d, *J* = 8 Hz, 1H), 7.37-7.33 (m, 3H), 7.29-7.27 (m, 2H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.99 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 6.84 (s, 2H), 5.21 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.74, 149.09, 143.55, 142.88, 129.23, 128.66, 127.79, 125.87, 123.28, 119.82, 119.15, 116.01, 112.38, 61.91, 53.17 ppm. Calc. MS (ESI) *m/z*: 287. Found MS (ESI) *m/z*: 287 [M]⁺.

2-amino-4-(2-chlorophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carbonitrile (4b)

White solid, melting point: 236-238 °C [Lit¹. 235-237 °C]; IR (KBr): v_{max} 3420, 3314, 3122, 2180, 1670, 1633, 1601, 1470, 1364, 1250, 1039 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.52 (s,1H), 7.66 (d, *J* = 8 Hz, 1H), 7.49-7.43 (m, 1H), 7.36-7.34 (m, 3H), 7.24 (d, *J* = 8 Hz, 1H), 7.13 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 6.90 (s, 2H), 5.64

(s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.69, 149.49, 143.49, 139.25, 131.34, 129.71, 129.22, 128.38, 127.87, 123.35, 119.93, 118.49, 116.05, 112.43, 60.74, 50.77 ppm. Calc. MS (ESI) *m/z*: 321. Found MS (ESI) *m/z*: 322 [M+1]⁺.

2-amino-4-(4-bromophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carbonitrile (4c)

White solid, melting point: >310 °C [Lit¹. 318-320 °C]; IR (KBr): v_{max} 3422, 3326, 3064, 2188, 1675, 1636, 1598, 1467, 1338, 1245, 1072 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.62 (s,1H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.56 (d, *J* = 8 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 3H), 7.11 (t, *J* = 7.6 Hz, *J* = 6.4 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, *J* = 6.4 Hz, 1H), 6.89 (s, 2H), 5.24 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.55, 149.19, 143.48, 142.16, 131.57, 129.19, 128.22, 123.33, 120.93, 119.89, 119.01, 116.07, 112.43, 61.33, 52.55 ppm. Calc. MS (ESI) *m/z*: 365. Found MS (ESI) *m/z*: 366 [M+1]⁺, 368 [M+2]⁺.

2-amino-4-(4-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carbonitrile (4d)

White solid, melting point: 236-238 °C [Lit². 237 °C]; IR (KBr): v_{max} 3463, 3325, 3227, 3014, 2196, 1686, 1637, 1601, 1516, 1474, 1351, 1256, 1013 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.79 (s,1H), 8.24 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.2 Hz, *J* = 7.6 Hz, 1H), 7.03-7.01 (m, 1H), 6.98 (s, 2H), 5.45 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.41, 150.10, 149.41, 146.97, 143.45, 129.17, 127.18, 124.04, 123.43, 120.02, 118.92, 116.17, 112.50, 60.55, 52.44 ppm. Calc. MS (ESI) *m/z*: 332. Found MS (ESI) *m/z*: 333 [M+1]⁺.

2-amino-4-(4-chlorophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carbonitrile (4e)

White solid, melting point: 236-238 °C [Lit¹. 235-238 °C]; IR (KBr): v_{max} 3421, 3326, 3068, 2186, 1679, 1638, 1585, 1467, 1309, 1246, 1094 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.54 (s,1H), 7.61 (d, *J* = 8 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 8 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, *J* = 8 Hz, 1H), 6.98 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 6.88 (s, 2H), 5.24 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.55, 149.19, 143.49, 141.75, 138.98, 130.01, 129.19, 128.63, 127.87, 123.31, 119.86, 119.01, 116.06, 114.00, 112.40, 61.38, 52.50 ppm. Calc. MS (ESI) *m/z*: 321. Found MS (ESI) *m/z*: 322 [M+1]⁺.

CI CI CI CN CN CN CN NH2

methyl 2-methyl-4-phenyl-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carboxylate (6a)

White solid, melting point: 262-264 °C ; IR (KBr): v_{max} 3379, 3206, 3064, 2952, 2856, 1633, 1604, 1580, 1459, 1353, 1250, 1097 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.86 (s,1H), 7.33 (d, *J* = 8.4 Hz, 3H), 7.24 (t, *J* = 6.8 Hz, *J* = 7.6 Hz, 3H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, *J* = 7.2 Hz, 1H), 6.42 (s, 1H), 3.55 (s, 3H), 2.44 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.62, 146.63, 145.58, 142.23, 141.93, 131.43, 128.39, 127.71, 126.85, 121.70, 120.14, 116.73, 109.76, 97.79, 59.29, 55.74, 50.74, 18.62, 13.98 ppm. Calc. MS (ESI) *m/z*: 319. Found MS (ESI) *m/z*: 320 [M+1]⁺.

methyl 4-(4-bromophenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6b)

White solid, melting point: 262-264 °C [Lit³. 263-264 °C]; IR (KBr): v_{max} 3310, 3228, 3096, 2957, 2842, 1669, 1654, 1619, 1574, 1438, 1339, 1267, 1075 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.90 (s,1H), 7.44 (d, *J* = 8 Hz, 2H), 7.34-7.28 (m, 3H), 7.24 (d, *J* = 8 Hz, 1H), 7.03 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 6.94 (t, *J* = 7.2 Hz, *J* = 7.6 Hz, 1H), 6.43 (s, 1H), 3.55 (s,

3H), 2.43 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.88, 146.32, 144.75, 141.57, 140.68, 130.73, 128.51, 121.22, 120.26, 119.65, 116.20, 109.14, 96.66, 54.53, 50.18, 18.06 ppm. Calc. MS (ESI) *m/z*: 397. Found MS (ESI) *m/z*: 397 [M]⁺, 399 [M+2]⁺.

methyl 4-(4-fluorophenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6c)

White solid, melting point: 172-174 °C ; IR (KBr): v_{max} 3381, 3234, 3039, 2948, 2863, 1700, 1655, 1617, 1571, 1458, 1384, 1236, 1095 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.88 (s,1H), 7.39-7.36 (m, 2H), 7.33 (d, J = 7.6 Hz, 1H), 7.26 (d, J = 8 Hz, 1H), 7.09-7.00 (m, 3H), 6.94 (t, J = 7.6 Hz, 1H), 6.45 (s, 1H), 3.55 (s, 3H), 2.43 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.58, 162.57, 160.14, 146.75, 145.41, 142.14, 138.23, 131.31, 128.90, 121.82, 120.25, 116.77, 115.09, 109.76, 97.65, 59.35, 54.99, 18.62, 13.97 ppm. Calc. MS (ESI) *m/z*: 337. Found MS (ESI) *m/z*: 338 [M+1]⁺.

methyl 4-(3-hydroxyphenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6d)

White solid, melting point: 260-262 °C ; IR (KBr): v_{max} 3331, 3154, 3039, 2948, 2841, 1666, 1646, 1619, 1571, 1457, 1343, 1263, 1093 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.79 (s,1H), 9.36 (s, 1H), 7.33 (d, *J* = 8 Hz, 1H), 7.22 (d, *J* = 8 Hz, 1H), 7.02 (t, *J* = 8 Hz, *J* = 7.6 Hz, 2H, 6.94 (t, *J* = 7.6 Hz, *J* = 7.2 Hz, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 6.64 (s, 1H), 6.54 (d, *J* = 8 Hz, 1H), 6.33 (s, 1H), 3.57 (s, 3H), 2.42 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.15, 157.83, 146.87, 146.14, 143.70, 142.71, 131.97, 129.73, 122.18, 120.61, 118.16, 117.19, 115.27, 113.87, 110.28, 98.33, 56.07, 51.25, 19.10 ppm. Calc. MS (ESI) *m/z*: 335. Found MS (ESI) *m/z*: 336 [M+1]⁺.

methyl 4-(4-methoxyphenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6e)

White solid, melting point: 240-242 °C ; IR (KBr): v_{max} 3307, 3031, 2951, 2834, 1698, 1654, 1611, 1570, 1456, 1383, 1257, 1089 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.79 (s,1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.8 Hz, 3H), 7.02 (t, *J* = 7.6 Hz, *J* = 8 Hz, 1H, 6.93 (t, *J* = 6.8 Hz, *J* = 7.2 Hz, 1H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.37 (s, 1H), 3.64 (s, 3H), 3.34 (s, 3H), 2.43 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.67, 158.57, 146.27, 145.59, 142.25, 134.05, 131.44, 128.07, 121.63, 120.06, 116.67, 113.67, 109.82, 98.03, 55.15, 54.88, 50.74, 18.59 ppm. Calc. MS (ESI) *m/z*: 349. Found MS (ESI) *m/z*: 350 [M+1]⁺.

methyl 4-(3-methoxyphenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6f)

White solid, melting point: 212-214 °C ; IR (KBr): v_{max} 3233, 3023, 2924, 2833, 1694, 1657, 1619, 1572, 1488, 1379, 1256, 1086 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.82 (s,1H), 7.34-7.27 (m, 2H), 7.15 (t, *J* = 8 Hz, 1H), 7.03 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H, 6.94 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 6.89 (s, 1H), 6.83 (d, *J* = 8 Hz, 1H), 6.74 (d, *J* = 8 Hz, 1H), 6.39 (s, 1H), 3.66 (s, 3H), 3.57 (s, 3H), 2.43 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.13, 159.51, 147.18, 146.12, 143.95, 142.72, 131.96, 130.11, 122.24, 120.69, 119.29, 117.24, 113.75, 112.89, 110.37, 98.20, 56.04, 55.41, 51.27, 19.11 ppm. Calc. MS (ESI) *m/z*: 349. Found MS (ESI) *m/z*: 350 [M+1]⁺.

ethyl 2-methyl-4-(4-nitrophenyl)-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carboxylate (6g)

White solid, melting point: 300-302 °C [Lit⁴. 302-303 °C]; IR (KBr): v_{max} 3310, 3235, 3039, 2928, 2856, 1697, 1656, 1618, 1571, 1458, 1351, 1254, 1093 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.96 (s,1H), 8.12 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.35 (d, *J* = 8 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 6.94 (t, *J* = 6.8 Hz, *J* = 7.6 Hz, 1H), 6.59 (s, 1H), 4.03-3.97 (m, 2H), 2.46 (s, 3H), 1.14 (t, *J* = 6.8 Hz,

J = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.36, 149.46, 147.94, 147.36, 145.68, 142.68, 131.78, 128.97, 124.15, 122.48, 120.88, 117.42, 110.22, 97.23, 59.99, 55.67, 19.20, 14.49 ppm. Calc. MS (ESI) *m/z*: 378. Found MS (ESI) *m/z*: 379 [M+1]⁺.

ethyl 4-(4-fluorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carboxylate (6h)

White solid, melting point: >310 °C [Lit³. >300 °C]; IR (KBr): v_{max} 3370, 3236, 3039, 2982, 2868, 1696, 1657, 1615, 1515, 1458, 1329, 1253, 1096 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.83 (s,1H), 7.41-7.37 (m, 2H), 7.33 (d, *J* = 8 Hz, 1H), 7.26 (d, *J* = 8 Hz, 1H), 7.09-7.00 (m, 3H), 6.94 (t, *J* = 7.6 Hz, 1H), 6.44 (s, 1H), 4.02-3.97 (m, 2H), 2.44 (s, 3H), 1.12 (t, *J* = 7.2 Hz, *J* = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.05, 162.56, 160.14, 146.60, 145.38, 142.19, 138.27, 131.37, 129.17, 121.77, 120.17, 116.76, 115.21, 114.99, 109.81, 97.68, 59.33, 55.09, 18.57, 13.99 ppm. Calc. MS (ESI) *m/z*: 351. Found MS (ESI) *m/z*: 352 [M+1]⁺.

ethyl 4-(2-chlorophenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carboxylate (6i)

White solid, melting point: >310 °C [Lit³. >300 °C]; IR (KBr): v_{max} 3383, 3241, 3107, 2927, 2851, 1700, 1663, 1619, 1594, 1577, 1459, 1385, 1256, 1086 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.93 (s,1H), 7.43 (d, *J* = 7.2 Hz, 1H), 7.38-7.32 (m, 2H), 7.28-7.16 (m, 3H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.73 (s, 1H), 3.97 (q, *J* = 4 Hz, 2H), 2.45 (s, 3H), 1.06 (t, *J* = 6.8 Hz, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.92, 147.25, 145.17, 142.05, 138.75, 131.63, 131.58, 130.41, 129.58, 129.44, 127.34, 121.86, 120.27, 116.86, 109.14, 96.28, 59.22, 53.64, 18.59, 13.97 ppm. Calc. MS (ESI) *m/z*: 367. Found MS (ESI) *m/z*: 368 [M+1]⁺.

OEt

White solid, melting point: 268-270 °C [Lit⁴. 269.6-269.8 °C]; IR (KBr): v_{max} 3310, 3236, 3048, 2928, 2865, 1698, 1657, 1615, 1571, 1457, 1365, 1258, 1088 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.87 (s,1H), 7.45 (s, 1H), 7.34 (d, *J* = 8 Hz, 1H), 7.29-7.23 (m, 4H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, *J* = 7.2 Hz, 1H), 6.45 (s, 1H), 4.01 (q, *J* = 8.8 Hz, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 1.14 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.95, 146.99, 145.34, 144.35, 142.18, 132.79, 131.36, 130.36, 127.71, 127.07, 125.61, 121.88, 120.29, 116.83, 109.81, 97.25, 59.38, 55.28, 18.64, 13.94 ppm. Calc. MS (ESI) *m/z*: 367. Found MS (ESI) *m/z*: 368 [M+1]⁺.

ethyl 4-(3-hydroxyphenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6k)

White solid, melting point: 242-244 °C ; IR (KBr): v_{max} 3351, 3241, 3031, 2909, 2842, 1678, 1615, 1591, 1571, 1455, 1369, 1257, 1091 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.80 (s,1H), 9.38 (s, 1H), 7.33 (d, *J* = 8 Hz, 1H), 7.22-7.20 (m, 1H), 7.03 (t, *J* = 8 Hz, 2H), 6.94 (t, *J* = 8 Hz, *J* = 7.2 Hz, 1H), 6.78 (t, *J* = 6.8 Hz, *J* = 6 Hz, 1H), 6.65 (d, *J* = 5.6 Hz, 1H), 6.55 (d, *J* = 8 Hz, 1H), 6.32 (s, 1H), 4.04-3.98 (m, 2H), 2.42 (s, 3H), 1.14 (t, *J* = 7.2 Hz, *J* = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.67, 165.18, 157.28, 145.60, 143.25, 142.22, 131.51, 129.14, 121.68, 120.08, 117.88, 166.68, 114.74, 113.58, 109.79, 97.92, 59.32, 55.72, 18.56, 14.01 ppm. Calc. MS (ESI) *m/z*: 349. Found MS (ESI) *m/z*: 350 [M+1]⁺.

ethyl 4-(3-methoxyphenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6l)

White solid, melting point: 210-212 °C [Lit⁴. 211-214 °C]; IR (KBr): ν_{max} 3389, 3232, 3100, 3021, 2924, 2839, 1702, 1657, 1618, 1575, 1457, 1365, 1249, 1086, 1048 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.81 (s,1H),

OH.

OEt

OEt

7.34-7.27 (m, 2H), 7.15 (t, J = 8 Hz, 1H), 7.02 (t, J = 8 Hz, J = 7.2 Hz, 1H), 6.96-6.92 (m, 2H), 6.85-6.82 (m, 1H), 6.74 (dd, J = 8 Hz, J = 2.8 Hz, 1H), 6.38 (s, 1H), 4.05-3.96 (m, 2H), 3.67 (s, 3H), 2.43 (s, 3H), 1.14 (t, J = 7.2 Hz, J = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 165.62, 159.44, 146.98, 146.06, 144.00, 143.94, 142.73, 131.99, 130.01, 122.20, 120.62, 119.46, 117.19, 113.95, 112.87, 110.37, 98.25, 59.82, 56.16, 55.40, 19.05, 14.52 ppm. Calc. MS (ESI) m/z: 363. Found MS (ESI) m/z: 364 [M+1]⁺.

ethyl 4-(4-methoxyphenyl)-2-methyl-1,4dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-3-carboxylate (6m)

White solid, melting point: 250-252 °C [Lit⁴. 250-252 °C]; IR (KBr): v_{max} 3394, 3231, 3017, 2907, 2838, 1705, 1656, 1617, 1574, 1457, 1365, 1247, 1080 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.76 (s,1H), 7.32 (d, *J* = 8 Hz, 2H), 7.26-7.23 (m, 2H), 7.02 (t, *J* = 7.2 Hz, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, *J* = 8 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 2H), 6.36 (s, 1H), 4.03-3.90 (m, 2H), 3.64 (s, 3H), 2.43 (s, 3H), 1.13 (t, *J* = 7.2 Hz, *J* = 6.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.66, 165.17, 158.57, 146.26, 146.07, 145.58, 142.25, 134.10, 131.44, 128.23, 121.62, 120.01, 116.66, 113.66, 109.82, 98.10, 59.25, 54.88, 50.73, 18.59, 14.03 ppm. Calc. MS (ESI) *m/z*: 363. Found MS (ESI) *m/z*: 364 [M+1]⁺.

ethyl 4-(4-ethoxyphenyl)-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2*a*]pyrimidine-3-carboxylate (6n)

White solid, melting point: 252-254 °C [Lit⁵. 253-255 °C]; IR (KBr): v_{max} 3303, 3192, 2975, 2888, 1650, 1614, 1558, 1474, 1391, 1248, 1051 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.77 (s,1H), 7.33 (d, *J* = 8 Hz, 1H), 7.25 (d, *J* = 8 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 3H), 7.03 (t, *J* = 7.6 Hz, 1H),

6.94 (t, J = 7.2 Hz, 1H), 6.78 (d, J = 8.4 Hz, 2H), 6.37 (s, 1H), 4.04-3.96 (m, 2H), 3.91 (q, J = 7.2 Hz, J = 7.6 Hz, 2H), 2.44 (s, 3H), 1.24 (t, J = 7.2 Hz, J = 6.8 Hz, 3H), 1.14 (t, J = 6.8 Hz, J = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 165.18, 157.87, 146.06, 145.53, 142.19, 133.93, 131.44, 128.24, 121.64, 120.03, 116.65, 113.95, 109.83, 98.10, 62.81, 59.28, 55.26, 18.52, 14.51, 14.00 ppm. Calc. MS (ESI) *m/z*: 377. Found MS (ESI) *m/z*: 378 [M+1]⁺.

methyl 5-methyl-7-phenyl-4,7-dihydro-[1,2,4]triazolo[1,5*a*]pyrimidine-6-carboxylate (8a)

White solid, melting point: 220-222 °C ; IR (KBr): v_{max} 3244, 3137, 3063, 1734, 1699, 1594, 1484, 1339, 1180, 1076 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.85 (s,1H), 7.65 (s, 1H), 7.45-7.41 (m, 2H), 7.29 (d, *J* = 7.2 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 2H), 6.26 (s, 1H), 3.50 (s, 3H), 2.41 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.58, 150.09, 146.86, 141.90, 128.39, 127.88, 126.78, 97.01, 81.17, 59.28, 50.85, 18.47 ppm. Calc. MS (ESI) *m/z*: 270. Found MS (ESI) *m/z*: 271 [M+1]⁺.

methyl 7-(4-hydroxyphenyl)-5-methyl-4,7-dihydro-[1,2,4]triazolo[1,5*a*]pyrimidine-6-carboxylate (8b)

White solid, melting point: 282-284 °C ; IR (KBr): v_{max} 3232, 3099, 3023, 1697, 1674, 1617, 1578, 1456, 1328, 1247, 1092 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.74 (s,1H), 9.47 (s, 1H), 7.64 (s, 1H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.67 (d, *J* = 8.4 Hz, 2H), 6.17 (s, 1H), 3.52 (s, 3H), 2.40 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.69, 156.98, 149.89, 146.80, 146.35, 132.48, 127.99, 114.99, 97.35, 58.75, 50.82, 18.41 ppm. Calc. MS (ESI) *m/z*: 286. Found MS (ESI) *m/z*: 287 [M+1]⁺.

methyl 7-(4-ethoxyphenyl)-5-methyl-4,7-dihydro-[1,2,4]triazolo[1,5*a*]pyrimidine-6-carboxylate (8c)

White solid, melting point: 210-212 °C ; IR (KBr): v_{max} 3313, 3133, 3063, 1671, 1658, 1611, 1510, 1486, 1385, 1297, 1151, 1035 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.77 (s,1H), 7.63 (s, 1H), 7.1 (d, *J* = 8 Hz, 2H), 6.8 (d, *J* = 8.4 Hz, 2H), 6.20 (s, 1H), 3.96 (q, *J* = 7.2 Hz, *J* = 6.8 Hz, 2H), 3.50 (s, 3H), 2.39 (s,3H), 1.28 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.64, 158.06, 149.95, 146.82, 146.54, 133.93, 127.99, 114.07, 97.21, 62.89, 58.69, 50.82, 18.42, 14.54 ppm. Calc. MS (ESI) *m/z*: 314. Found MS (ESI) *m/z*: 315 [M+1]⁺.

ethyl 5-methyl-7-(4-nitrophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5*a*]pyrimidine-6-carboxylate (8d)

White solid, melting point: 234-236 °C ; IR (KBr): v_{max} 3235, 3148, 3070, 1709, 1624, 1600, 1541, 1495, 1383, 1231, 1151, 1093 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.98 (s,1H), 8.17 (d, *J* = 8 Hz, 2H), 7.67 (s, 1H), 7.51 (d, *J* = 8 Hz, 2H), 6.41 (s, 1H), 3.93 (q, *J* = 2.8 Hz, 2H), 2.42 (s, 3H), 1.02 (t, *J* = 6.8 Hz, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.76, 150.43, 148.94, 147.64, 146.79, 128.48, 123.64, 96.07, 81.37, 59.50, 58.82, 18.52, 13.79 ppm. Calc. MS (ESI) *m/z*: 329. Found MS (ESI) *m/z*: 330 [M+1]⁺.

ethyl 7-(4-hydroxyphenyl)-5-methyl-4,7-dihydro-[1,2,4]triazolo[1,5*a*]pyrimidine-6-carboxylate (8e)

White solid, melting point: 292-294 °C ; IR (KBr): v_{max} 3249, 3155, 3078, 1698, 1635, 1542, 1456, 1383, 1262, 1154, 1079 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.71 (s,1H), 9.46 (s,1H), 7.64 (s,1H), 7.02 (d, *J* = 8 Hz, 2H), 6.67 (d, *J* = 8 Hz, 2H), 6.17 (s, 1H), 4.01-3.92 (m, 2H), 2.40 (s, 3H), 1.06 (t, *J* = 6.8 Hz, 3H,) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.16, 156.94, 149.87, 146.77, 146.13, 132.64, 128.12, 114.90, 97.53, 59.25, 58.87, 18.31, 13.87 ppm. Calc. MS (ESI) *m/z*: 300. Found MS (ESI) *m/z*: 301 [M+1]⁺.

References

- (1) Hemmati, B.; Javanshir, S.; Dolatkhah, Z. *RSC Adv.* **2016**, *6* (56), 50431–50436.
- (2) Hamidinasab, M.; Mobinikhaledi, A. *ChemistrySelect* **2019**, *4* (1), 17–23.
- (3) Shaterian, H. R.; Fahimi, N.; Azizi, K. Res. Chem. Intermed. 2014, 40 (5), 1879–1898.
- (4) Abedini, M.; Shirini, F.; Mousapour, M.; Goli Jolodar, O. *Res. Chem. Intermed.* 2016, 42 (7), 6221–6229.
- (5) Reddy, M. V.; Reddy, A. V. S.; Jeong, Y. T. Res. Chem. Intermed. 2016, 42 (5), 4893–4906.

Spectral Data

¹H NMR of (4a)

¹³C NMR of (4a)

¹H NMR of (4b)

¹³C NMR of (4b)

¹H NMR of (4c)

¹³C NMR of (4c)

¹H NMR of (4d)

¹³C NMR of (4d)

¹H NMR of (4e)

¹³C NMR of (4e)

¹H NMR of (6a)

¹H NMR of (6b)

¹H NMR of (6c)

¹H NMR of (6d)

¹H NMR of (6e)

¹H NMR of (6f)

¹³C NMR of (6f)

¹H NMR of (6g)

¹H NMR of (6h)

¹³C NMR of (6h)

¹H NMR of (6i)

¹³C NMR of (6i)

¹H NMR of (6j)

¹³C NMR of (6j)

¹H NMR of (6k)

¹³C NMR of (6k)

¹H NMR of (6l)

¹H NMR of (6m)

¹H NMR of (6n)

0.3

0.2

0.1

Chemical Shift (ppm)

¹H NMR of (8a)

¹H NMR of (8b)

¹H NMR of (8c)

¹H NMR of (8d)

¹H NMR of (8e)

Table-1: In-vitro anthelmintic activity of benzimidazole derivatives against S. obvelata. All dataare expressed as mean \pm SEM. All data are statistically significant at p \leq 0.005 followed byTukey's test

Benzimidazole	R	R1	S.obvelata	S.obvelata	S.obvelata	S.obvelata
derivatives			Paralysis	MortalityTime	Paralysis	MortalityTime
			Time at 200	at 200 µg/m		at ovu µg/m
6b	OCH ₃	4-Br-C ₆ H ₄	9.83±.21	12.25±.32	10.08±.13	10.41±.54
6c	OCH ₃	$4-F-C_6H_4$	13.50±.71	16.5±.17	10.91±.48	12.41±.48
6d	OCH ₃	3-OH-C ₆ H ₄	7.41±.47	9.66±.15	6.83±.26	8.50±.24
6e	OCH ₃	4-OCH ₃ -C ₆ H ₄	15.08±.33	18.58±57	12.75±.12	16.16±.16
6f	OCH ₃	3-OCH₃-C₆H₄	16.66±.74	20.08±.22	12.33±.79	14.83±.44
6h	OCH ₂ CH ₃	4-F-C ₆ H ₄	10.58±.23	13.25±.33	10.16±.33	11.83±.25
6i	OCH ₂ CH ₃	2-Cl-C ₆ H ₄	13.33±.66	15.75±.27	12.75±.54	14.16±.16
бј	OCH ₂ CH ₃	3-Cl-C ₆ H ₄	12.41±.27	14.83±.52	10.08±.19	11.66±.23
6k	OCH ₂ CH ₃	3-OH-C ₆ H ₄	8.91±.35	10.91±.11	7.41±.37	8.33±.07
61	OCH ₂ CH ₃	3-OCH₃-C₆H₄	17.21±1.05	19.58±.84	12.66±.82	14.83±.62
6m	OCH ₂ CH ₃	4-OCH ₃ -C ₆ H ₄	16.16±.62	18.75±.79	13.5±.82	15.25±.43
6n	OCH ₂ CH ₃	$4-OEt-C_6H_4$	15.83±.54	19.41±.61	14.91±.60	18.08±.76
8a	OCH ₃	C ₆ H ₄	18.08±.25	20.83±.83	13.41±.12	14.83±.44
8b	OCH ₃	$4-OH_2-C_6H_4$	13.91±.66	17.33±.58	11.16±.54	12.58±.46
8c	OCH ₃	4-OEt-C ₆ H ₄	18.50±.70	21.5±.30	14.83±.78	17.7±.34
8d	OCH ₂ CH ₃	$4-NO_2-C_6H_4$	12.58±.18	15.33±.39	10.25±.62	11.33±.31
8e	OCH ₂ CH ₃	$4-OH_2-C_6H_4$	13.83±.11	16.83±.33	10.25±.23	11.23±.14
ALZ			13.75 ±.85	16.08±.56	6.56±.18	8.33±.27
Control			36.41±.121		43.75±1.55	

Table 2: *In vivo* anthelmintic effects of benzmidazole derivatives on *S. obvelata* in infected laboratory mice (n=5). Data are expressed as mean \pm SEM. All data are statistically significant at $p \le 0.005$ followed by Tukey's test

Groups	Benzimidazole	Worm Cour	nt at Necropsy	Percentage reduction in worm count (%)	
	Derivatives	Min-Max	Mean ± SEM		
Ι	Control	298-620	452 ± 67.14	0	
п	6k (-OH)				
	20 mg/kg	104-187	145.2 ±33.92	67.87	
	80 mg/kg	38-92	71.6 ± 20.62	84.15	
ш	6b (-Br)				
	20 mg/kg	87-232	160.2 ± 53.65	64.55	
	80 mg/kg	57-116	90.2 ± 22.96	80.04	
IV	8d (NO ₂)				
	20 mg/kg	54-147	103.8 ±33.64	77.03	
	80 mg/kg	17-64	39.8 ± 17.65	91.19	
V	Albendazole	23-57	39.4 ± 13.27	91.28	
	50 mg/kg				

Table 3: Repeated 28 days oral administration with benzimidazole derivatives at 80 mg/kg;ALZ at 50 mg/kg . Body weight and relative organ weight (ROW) of mice. Data are expressed as mean \pm SEM. All data are statistically significant at p \leq 0.005 followed by Tukey's test

Sl. No.	Compounds	BodyWeight (gm) (Week 0)	Body Weight (gm) (Week 4)	Liver gm)	Right Kidney (gm)	Left Kidney (gm)	Spleen (gm)
1.	6k(-OH)	24.7 ± 0.10	22.8 ± 0.18	1.42±0.22	0.20±0.16	0.22±0.27	0.08±0.02
2.	6b(-Br)	27.8 ± 0.73	26.40± 0.42	1.45±0.35	0.18±0.41	0.21±0.13	0.07 ± 0.02
3.	8d (-NO ₂)	27.11±0.23	24.6± 0.63	1.32±0.18	0.14 ± 0.17	0.16±0.20	0.10±0.01
4.	Control	26.25±0.31	28.26±0.52	1.85±0.12	0.21 ± 0.21	0.23±0.41	0.07±0.03
5.	ALZ	25.41	24.04 ±0.33	1.62±0.11	0.17±0.70	0.17±0.15	0.06±0.01

Compounds	Predicted LD ₅₀ mg/kg	Hepatotoxicity	Cytotoxicity	Mutagenicity	Carcinogenicity	Immunotoxicity	Toxicity Class
6b	2430	inactive	inactive	inactive	inactive	inactive	V
6c	2430	inactive	inactive	inactive	inactive	inactive	V
6d	2430	inactive	inactive	inactive	inactive	inactive	V
6e	2100	inactive	inactive	inactive	inactive	inactive	V
6f	2100	inactive	inactive	inactive	inactive	inactive	V
6h	2430	inactive	inactive	inactive	inactive	inactive	V
6i	1770	inactive	inactive	inactive	inactive	active	IV
6j	630	inactive	inactive	inactive	inactive	inactive	IV
6k	2430	inactive	inactive	inactive	inactive	inactive	V
61	800	inactive	inactive	inactive	inactive	inactive	IV
6m	2100	inactive	inactive	inactive	inactive	inactive	V
6n	2100	inactive	inactive	inactive	inactive	inactive	V
8a	2100	inactive	inactive	inactive	inactive	inactive	V
8b	2100	active	inactive	active	active	inactive	V
8c	2100	inactive	inactive	active	inactive	inactive	V
8d	2025	inactive	inactive	active	active	inactive	V
8e	2025	inactive	inactive	inactive	inactive	inactive	V

 Table 4: In silico Toxicity Prediction of Benzimidazole Derivatives using online tool Protox II