Electronic Supplementary Information

Recent advances in selective methanol oxidation electrocatalysts for

the co-production of hydrogen and value-added formate

Jiaxin Li, Hongmei Yu*, Jingchen Na, Senyuan Jia, Yutong Zhao, Kaiqiu Lv, Wenzhuo Zhang, Jun Chi, Zhigang Shao*

Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China

*Corresponding author.

E-mail addresses: hmyu@dicp.ac.cn; zhgshao@dicp.ac.cn.

Catalyst	Electrolyte	Scan rate /mV s ⁻¹	Potential at a certain current density for SMOR/V vs. RHE	Faradaic efficiency of formate/%	Stability/h	Overpotential of HER/mV	Potential at a certain current density for SMOR&HER/V vs. RHE	Ref.
Part A: Single ator	m catalyst							
Cu _{SA} -Rh MAs/CF	1 M KOH + 4 M CH ₃ OH	5	1.40@50 mA cm ⁻² 1.44@100 mA cm ⁻² 1.46@150 mA cm ⁻² 1.47@200 mA cm ⁻²	~90	/	/	/	1
$Pt_1/Ti_{0.8}W_{0.2}N_xO_y$	0.5 M KOH + 0.5 M CH ₃ OH	50	0.82@560 mA mg ⁻ 1 _{Pt}	90	10@0.8 V vs. RHE	/	/	2
Part B: Metal and	metal alloy							
Ni/WC	1 M NaOH + 1 M CH ₃ OH	5	/	93.8	10@0.5 V vs. Ag/AgCl	/	/	3
Ni-NF-Af	1 M KOH + 0.5 M CH ₃ OH	5	1.345@100 mA cm ⁻²	~100	5@100 mA cm ⁻²	/	/	4
Ni-MOFs@350	1 M KOH + 1 M CH ₃ OH	5	1.37@100 mA cm ⁻²	98.4	Multistep CA (5 h/step)	/	/	5
Ni-MOFs-120/NF	1 M KOH + 0.5 M CH ₃ OH	5	1.37@10 mA cm ⁻² 1.44@100 mA cm ⁻²	/	20@1.4 V vs. RHE	/	/	6
NiCo@NF	1 M KOH +	5	1.30@50 mA cm ⁻²	/	50@50 mA	220@50 mA cm ⁻²	1.41@25 mA cm ⁻²	7

Table S1. The catalytic properties of the existing catalysts for SMOR

	1 M CH ₃ OH		1.42@100 mA cm ⁻²		cm ⁻²			
NiCo-NF-ET	1 M KOH + 0.5 M CH ₃ OH	5	1.228@10 mA cm ⁻² 1.272@50 mA cm ⁻² 1.291@100 mA cm ⁻²	~100	10@1.42 V vs. RHE	/	/	8
NiCu@Cu	1 M KOH + 2 M CH ₃ OH	5	1.32@10 mA cm ⁻²	>95	17@50 mA cm ⁻²	85@50 mA cm ⁻²	1.45@10 mA cm ⁻²	9
NiIr-MOF/NF	1 M KOH + 4 M CH ₃ OH	5	1.33@10 mA cm ⁻² 1.41@100 mA cm ⁻²	~100	20@10 mA cm ⁻²	17@10 mA cm ⁻²	1.39@10 mA cm ⁻²	10
FeRu-MOF	1 M KOH + 4 M CH ₃ OH	5	1.32@10 mA cm ⁻² 1.37@100 mA cm ⁻²	>90	24@40 mA cm ⁻²	42@10 mA cm ⁻²	1.40@10 mA cm ⁻²	11
NiCoMo	1 M KOH + 1 M CH ₃ OH	5	1.34@50 mA cm ⁻² 1.37@100 mA cm ⁻² 1.41@200 mA cm ⁻²	85.5	50	125@50 mA cm ⁻²	1.46@50 mA cm ⁻²	12
Part C: Oxide					•		·	
NiO/NF	1 M KOH + 1 M CH ₃ OH	10	1.53@100 mA cm ⁻²	/	20000 s@1.82 V vs. RHE	/	/	13
Co ₃ O _{4-x} /NF-P	1 M KOH + 1 M CH ₃ OH	/	1.318@10 mA cm ⁻²	>95	27@50 mA cm ⁻²	/	1.54@10 mA cm ⁻²	14
Co–N–C/CoO/CF	1 M KOH + 0.5 M CH ₃ OH	2	1.309@50 mA cm ⁻²	98.2	120@1.4 V vs. RHE	/	/	15
Nb ₂ O ₅ /NF	1 M KOH + 1 M CH ₃ OH	/	1.47@100 mA cm ⁻²	~100	Multistep CA (2 h/step)	/	/	16
CuO/CF	1 M KOH + 1 M CH ₃ OH	5	/	~100	24@1.82 V vs. RHE	/	/	17

CuO NS/CF	1 M KOH + 1 M CH ₃ OH	5	1.47@100 mA cm ⁻²	97	42@1.32 V vs. RHE	/	/	18
B/CuCo ₂ O ₄	1 M KOH + 1 M CH ₃ OH	50	/	43	2@0.6 V vs. Ag/AgCl	/	/	19
NiFe ₂ O ₄ /NF	1 M KOH + 0.5 M CH ₃ OH	5	/	>95	6	/	/	20
LaCo _{0.5} Fe _{0.5} O ₃	1 M KOH + 1 M CH ₃ OH	10	/	44	2@1.6 V vs. RHE	/	/	21
Part D: Hydroxid	e							
Ni(OH) ₂ /NF	1 M KOH + 0.5 M CH ₃ OH	5	1.36@100 mA cm ⁻²	~100	15@20 mA cm ⁻²	185@10 mA cm ⁻²	1.52@10 mA cm ⁻² 1.62@50 mA cm ⁻²	22
β-Ni(OH) ₂ /NF	1 M KOH + 1 M CH ₃ OH	5	1.398@10 mA cm ⁻²	99.98	9@1.6 V vs. RHE	/	1.684@10 mA cm ⁻²	23
LC– Ni(OH) ₂ ·xH ₂ O	1 M KOH + 0.5 M CH ₃ OH	5	1.39@100 mA cm ⁻²	100	100000 s@1.42 V vs. RHE	/	/	24
Co ²⁺ -doped Ni(OH) ₂	1 M NaOH + 0.5 M CH ₃ OH	1	1.32@100 mA cm ⁻²	≥96.5	20@25 mA cm ⁻²	/	/	25
NiMn-LDHs	1 M KOH +	5	1.41@100 mA cm ⁻² 1.49@500 mA cm ⁻²	~100	20@100 mA cm ⁻²	/	/	26
NiFe-LDHs	3 M CH ₃ OH	5	1.45@100 mA cm ⁻² 1.62@500 mA cm ⁻²	/	/	/	/	
NiFe LDH@SnO ₂ /NF	1 M KOH + 0.5 M CH ₃ OH	5	1.396@10 mA cm ⁻²	/	12@100 mA cm ⁻²	/	/	27
NiFe-LDH/NiFe-	1 M KOH +	/	1.416@10 mA cm ⁻²	~100	28@20 mA	/	/	28

HAB/CF	3 M CH ₃ OH		1.538@100 mA cm ⁻²		cm ⁻²					
Ni _{0.33} Co _{0.67} (OH) ₂ / NF	1 M KOH + 0.5 M CH ₃ OH	5	1.33@10 mA cm ⁻²	~100	20@1.35 V vs. RHE	/	1.5@10 mA cm ⁻²	29		
NiCo-LDH-E- 30/NF	1 M KOH + 1 M CH ₃ OH		1.31@10 mA cm ⁻² 1.36@100 mA cm ⁻²	>95	120@100 mA cm ⁻²	/	/	30		
S–NiCo-LDH	1 M KOH + 1 M CH ₃ OH	/	1.26@10 mA cm ⁻² 1.39@100 mA cm ⁻²	~100	Multistep CA (2 h/step)	/	/	31		
Co _x P@NiCo- LDH	1 M KOH + 0.5 M CH ₃ OH	5	1.24@10 mA cm ⁻²	~100	20@1.35 V vs. RHE	100@10 mA cm ⁻²	1.43@10 mA cm ⁻² 1.50@20 mA cm ⁻²	32		
NiFe _x P@NiCo- LDH	1 M KOH + 0.5 M CH ₃ OH	5	/	100	10@0.96 V vs. RHE	100@10 mA cm ⁻²	1.42@10 mA cm ⁻²	33		
NiCo _x P@ NiCo- LDH/CC	1 M KOH + 0.5 M CH ₃ OH	5	1.23@10 mA cm ⁻²	~100	10@1.35 V vs. RHE	132@10 mA cm ⁻²	1.43@10 mA cm ⁻²	34		
NiCo-m	1 M KOH + 3 M CH ₃ OH	10	1.31@30 mA cm ⁻² 1.35@50 mA cm ⁻² 1.40@100 mA cm ⁻²	/	Multistep CA	200@50 mA cm ⁻²	1.50@20 mA cm ⁻²	35		
Cu _{0.33} CoCo- LDH/CF	1 M KOH + 3 M CH ₃ OH	/	1.28@10 mA cm ⁻²	~100	24@20 mA cm ⁻²	/	/	36		
Part E: Nonmetal	Part E: Nonmetal alloy									
Ni ₃ C	1 M KOH + 0.5 M CH ₃ OH	/	/	100	50000 s@120 mA cm ⁻²	/	/	37		
Cu ₃ N	1 M KOH + 1 M CH ₃ OH	/	1.35@10 mA cm ⁻²	>90	12	/	/	38		
Ni-MoN/NF	1 M KOH +	5	$1.48@100 \text{ mA cm}^{-2}$	99.8	/	$49@10 \text{ mA cm}^{-2}$	$0.56@10 \text{ mA cm}^{-2}$	39		

	0.5 M CH ₃ OH					193@100 mA cm ⁻²		
Ni ₂ Co ₂ Fe ₁ -P	1 M KOH + 2 M CH ₃ OH	1	1.49@20 mA cm ⁻²	/	Multistep CA (1 h/step)	61@20 mA cm ⁻²	1.48@20 mA cm ⁻²	40
NiS	1 M KOH + 1 M CH ₃ OH	50	/	98	3@1.6 V vs. RHE	/	/	41
Ni ₃ S ₂ /CNTs	1 M KOH + 1 M CH ₃ OH	/	1.36@100 mA cm ⁻²	>95	20@100 mA cm ⁻²	/	/	42
Ni ₃ S ₂ -CNFs	1 M KOH + 1 M CH ₃ OH	5	1.40@100 mA cm ⁻²	99.82	3@1.62 V vs. RHE	/	/	43
CC@NiCo ₂ S ₄	1 M KOH + 1 M CH ₃ OH	5	1.40@100 mA cm ⁻²	~100	3@1.7 V vs. RHE		1.32@10 mA cm ⁻²	44
FCNS@NF	1 M KOH + 1 M CH ₃ OH	2	1.42@100 mA cm ⁻²	98.67	10@1.4 V vs. RHE	/	/	45
h-NiSe/CNTs	1 M KOH + 1 M CH ₃ OH	5	1.57@50 mA cm ⁻² 1.66@100 mA cm ⁻² 1.75@200 mA cm ⁻² 1.91@400 mA cm ⁻²	97.97	20@1.62 V vs. RHE	/	/	46
CNFs@NiSe/CC	1 M KOH + 1 M CH ₃ OH	5	1.47@200 mA cm ⁻² 1.50@300 mA cm ⁻² 1.55@400 mA cm ⁻²	>98	20@1.62 V vs. RHE	/	/	47
Ni _{0.9} Co _{0.1} Se	1 M NaOH + 1 M CH ₃ OH	10	1.65@185 mA cm ⁻²	84	/	/	/	48
Ni _{0.75} Fe _{0.25} Se ₂	1 M KOH + 0.5 M CH ₃ OH	50	/	99.7	10000 s@1.48 V vs. RHE	/	/	49

NiP _P			$1.40@400 \text{ m} \text{ A cm}^{-2}$			/	/	
	1 M KOH +	5	$1.40@400 \text{ mA cm}^2$	/	/	/	/	50
NiSe _x -R	0.5 M CH ₃ OH	5	1.517@400 mA cm ⁻²	Τ		/	/	
Part F: Multi-com	ponent heterostr	ucture ca	talyst		I		I	ı <u> </u>
Pt-Co ₃ O ₄ /CP	1 M NaOH + 2 M CH ₃ OH+ 3.5%NaCl	5	0.555@10 mA cm ⁻²	~93	/	50@10 mA cm ⁻²	0.55@10 mA cm ⁻²	51
Ru&Fe-WOx	1 M NaOH + 3 M CH ₃ OH	/	1.35@10 mA cm ⁻² 1.51@500 mA cm ⁻²	~100	37.5@500 mA cm ⁻²	32@10 mA cm ⁻²	1.5@100 mA cm ⁻² 1.62@500 mA cm ⁻²	52
CuS@CuO/CF	1 M KOH + 1 M CH ₃ OH	10	/	99%	6	/	/	53
CeO ₂ -RuO ₂	0.5 M H ₂ SO ₄ + 2.5 M CH ₃ OH	10	1.195@10 mA cm ⁻²	53.72	24@1.32 V vs. RHE	/	1.30@10 mA cm ⁻²	54
Fe ₂ O ₃ /NiO-NF	1 M KOH + 1 M CH ₃ OH	5	1.328@onset 1.654@500 mA cm ⁻²	>98	40@300 mA cm ⁻²	/	/	55
Bi ₂ O ₃ -SnO@CuO	1 M KOH + 1 M CH ₃ OH	5	1.53@100 mA cm ⁻²	~100	8@1.7 V vs. RHE	/	/	56
CNTs@CoO– Ni(OH) ₂	1 M KOH + 1 M CH ₃ OH	5	1.36@100 mA cm ⁻²	>95	40@1.4 V vs. RHE	/	1.39@10 mA cm ⁻²	57
Cu(OH) ₂ @NiFe(OH) _x	1 M KOH + 3 M CH ₃ OH	/	1.32@60 mA cm ⁻²	~100	22@10 mA cm ⁻²	/	/	58
Ni ₃ B/Ni	1 M KOH + 1 M CH ₃ OH	5	/	~100	24@100 mA cm ⁻²	/	/	59
Co-Ni-P/NF	1 M KOH + 0.5 M CH ₃ OH	5	1.33@100 mA cm ⁻²	100	20@100 mA cm ⁻²	145@100 mA cm ⁻²	1.45@100 mA cm ⁻²	60
Ni ₂ P-CoP/NF	1 M KOH +	/	1.16@10 mA cm ⁻²	99.8	20@20 mA	96@10 mA cm ⁻²	1.56@50 mA cm ⁻²	61

	0.5 M CH ₃ OH		1.27@50 mA cm ⁻²		cm ⁻²	160@100 mA cm ⁻²		
			1.30@100 mA cm ⁻²					
Cu ₂ Se/Co ₃ Se ₄	1 M KOH + 1 M CH ₃ OH	5	1.39@10 mA cm ⁻²	100	20000 s@10 mA cm ⁻²	/	/	62

References

- 1. Q. Mao, X. Mu, W. Wang, K. Deng, H. Yu, Z. Wang, Y. Xu, L. Wang and H. Wang, *Nat. Commun.*, 2023, **14**, 5679.
- Y. A. Awoke, M.-C. Tsai, D. B. Adam, A. A. Ayele, S.-C. Yang, W.-H. Huang, J.-L. Chen, C.-W. Pao, C. Y. Mou, W.-N. Su and B. J. Hwang, *Electrochim. Acta*, 2022, **432**, 141161.
- M. Zhang, J. Zhu, R. Wan, B. Liu, D. Zhang, C. Zhang, J. Wang and J. Niu, *Chem. Mater.*, 2022, 34, 959-969.
- 4. C. Cao, D. Ma, J. Jia, Q. Xu, X. Wu and Q. Zhu, Adv. Mater., 2021, 33, 2008631.
- Y. Zhou, Z. Wang, W. Fang, R. Qi, Z. Wang, C. Xia, K. Lei, B. You, X. Yang, Y. Liu, W. Guo, Y. Su, S. Ding and B. Y. Xia, *ACS Catal.*, 2023, 13, 2039-2046.
- 6. J. Li, *Electrochem. Commun.*, 2023, **146**, 107416.
- F. Arshad, A. Tahir, T. u. Haq, H. Duran, I. Hussain and F. Sher, *Energ. Fuel.*, 2023, 37, 14161-14170.
- 8. J. Tian, C. Cao, D. Ma, S. Han, Y. He, X. Wu and Q. Zhu, *Small Struct.*, 2022, **3**, 2100134.
- F. Arshad, A. Tahir, T. u. Haq, H. Duran, I. Hussain and F. Sher, *Int. J. Hydrogen Energy*, 2022, 47, 36118-36128.
- Y. Xu, M. Liu, M. Wang, T. Ren, K. Ren, Z. Wang, X. Li, L. Wang and H. Wang, *Appl. Catal.* B., 2022, **300**, 120753.
- 11. Q. Ling, Z. Zhao, Z. Li, K. Yan, C. Ding, P. Chen, Z. Sun, G. He, J. Lv and M. Zhang, *J. Mater. Chem. A*, 2023, **11**, 2876-2888.
- J. Chen, M. Ahmad, Y. Zhang, H. Ye, L. Wang, J. Zhang, X. Fu and J. Luo, *Chem. Eng. J.*, 2023, 454, 140056.
- M. I. Abdullah, A. Hameed, N. Zhang, M. H. Islam, M. Ma and B. G. Pollet, *ACS Appl. Mater. Inter.*, 2021, 13, 30603-30613.
- J. Zhang, Y. Hua, H. Li, X. Zhang, C. Shi, Y. Li, L. Di and Z. Wang, *Chem. Eng. J.*, 2023, 478, 147288.
- Y. Wang, X. Yang, K. Wang, Z. Liu, X. Sun, J. Chen, S. Liu, X. Sun, J. Xie and B. Tang, *Green Chem.*, 2023, 25, 8216-8225.
- X. Wang, C. Xiao, Y. Li, T. Murayama, T. Ishida, M. Lin and G. Xiu, *Appl. Catal. A-Gen*, 2023, 664, 119341.
- M. Khan, A. Hameed, A. Samad, T. Mushiana, M. I. Abdullah, A. Akhtar, R. S. Ashraf, N. Zhang, B. G. Pollet, U. Schwingenschlögl and M. Ma, *Commun. Chem.*, 2022, 5, 109.
- 18. X. Wei, Y. Li, L. Chen and J. Shi, Angew. Chem. Int. Edit., 2021, 60, 3148-3155.
- 19. N. Kumar T R, S. Kamalakannan, M. Prakash, B. Viswanathan and B. Neppolian, *ACS Appl. Energ. Mater.*, 2022, **5**, 2104-2111.
- X. Du, M. Tan, T. Wei, H. Kobayashi, J. Song, Z. Peng, H. Zhu, Z. Jin, R. Li and W. Liu, *Chem. Eng. J.*, 2023, 452, 139404.
- F. Meng, C. Dai, Z. Liu, S. Luo, J. Ge, Y. Duan, G. Chen, C. Wei, R. R. Chen, J. Wang, D. Mandler and Z. J. Xu, *eScience*, 2022, 2, 87-94.
- J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang, Q. Wang, L. Wang, X. Fu and J. Luo, *Appl. Catal. B-*Environ, 2021, 281, 119510.
- L. Gong, N. Xuan, G. Gu, P. Lv, N. Huang, C. Song, M. Zheng, J. Wang, P. Cui, G. Gu, Y. Jia,
 G. Cheng and Z. Du, *Nano Energy*, 2023, 107, 108124.

- G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang, X. Fu, J. Zhang, J. Luo and J. Liu, *Nano-Micro Lett.*, 2022, 14, 200.
- 25. L. Ming, X. Wu, S. Wang, W. Wu and C. Lu, *ChemElectroChem*, 2022, 9, e202200522.
- B. Zhu, B. Dong, F. Wang, Q. Yang, Y. He, C. Zhang, P. Jin and L. Feng, *Nat. Commun.*, 2023, 14, 1686.
- C. Wan, J. Jin, X. Wei, S. Chen, Y. Zhang, T. Zhu and H. Qu, *J. Mater. Sci. Technol.*, 2022, 124, 102-108.
- S. Jiang, T. Xiao, C. Xu, S. Wang, H. Peng, W. Zhang, B. Liu and Y. Song, *Small*, 2023, 19, 2208027.
- M. Li, X. Deng, K. Xiang, Y. Liang, B. Zhao, J. Hao, J. Luo and X. Fu, *ChemSusChem*, 2020, 13, 914-921.
- H. Chi, J. Lin, S. Kuang, M. Li, H. Liu, Q. Fan, T. Yan, S. Zhang and X. Ma, *J. Energy Chem.*, 2023, 85, 267-275.
- C. Xiao, L. Cheng, Y. Wang, J. Liu, R. Chen, H. Jiang, Y. Li and C. Li, *J. Mater. Chem. A*, 2022, 10, 1329-1335.
- 32. M. Li, X. Deng, Y. Liang, K. Xiang, D. Wu, B. Zhao, H. Yang, J.-L. Luo and X.-Z. Fu, *J. Energy Chem.*, 2020, **50**, 314-323.
- Y. Zhang, X. Wu, G. Fu, F. Si, X. Fu and J. Luo, *Int. J. Hydrogen Energy*, 2022, 47, 17150-17160.
- 34. Y. Zhang, X. Wu, G. Fu, X. Fu and J. Luo, J. Alloy. Compd., 2022, 906, 164305.
- B. Liu, X. Wang, S. Wang, H. Peng, T. Xiao, G. Liu, S. Bai, Y. Zhao, W. Zhang and Y. Song, Mater. Today Energy, 2022, 28, 101082.
- B. Liu, T. Xiao, X. Sun, H.-Q. Peng, X. Wang, Y. Zhao, W. Zhang and Y.-F. Song, J. Mater. Chem. A, 2022, 10, 19649-19661.
- J. Li, R. Wei, X. Wang, Y. Zuo, X. Han, J. Arbiol, J. Llorca, Y. Yang, A. Cabot and C. Cui, Angew. Chem. Int. Ed., 2020, 59, 20826-20830.
- L. Zhao, Q. Sun, M. Li, Y. Zhong, P. Shen, Y. Lin and K. Xu, *Sci. China Mater.*, 2023, 66, 1820-1828.
- 39. C. Rao, H. Wang, K. Chen, H. Chen, S. Ci, Q. Xu and Z. Wen, *Small*, 2024, 20, 2303300.
- 40. J. Chang, W. Wang, D. Wu, F. Xu, K. Jiang, Y. Guo and Z. Gao, *J. Colloid Interf. Sci.*, 2023, 648, 259-269.
- J. Li, X. Tian, X. Wang, T. Zhang, M. C. Spadaro, J. Arbiol, L. Li, Y. Zuo and A. Cabot, *Inorg. Chem.*, 2022, 61, 13433-13441.
- B. Zhao, C. Xu, M. Shakouri, R. Feng, Y. Zhang, J. Liu, L. Wang, J. Zhang, J.-L. Luo and X.-Z. Fu, *Appl. Catal. B.*, 2022, **305**, 121082.
- B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui, R. Feng, L. Wang, J. Zhang, J. Luo and X. Fu, *Nano Energy*, 2021, 80, 105530.
- F. Si, J. Liu, Y. Zhang, B. Zhao, Y. Liang, X. Wu, X. Kang, X. Yang, J. Zhang, X. Fu and J. Luo, Small, 2023, 19, 2205257.
- 45. Y. Yi, J. Li and C. Cui, *Chinese Chem. Lett.*, 2022, **33**, 1006-1010.
- B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui, L. Wang, J. Zhang, J. Luo and X. Fu, *Adv. Funct. Mater.*, 2021, **31**, 2008812.
- B. Zhao, J. W. Liu, Y. R. Yin, D. Wu, J. L. Luo and X. Z. Fu, *J. Mater. Chem. A*, 2019, 7, 25878-25886.

- S. Ganguly, S. Paul, D. Khurana, T. S. Khan, P. K. Giri, C. Loha and S. Ghosh, *ACS Appl. Energ. Mater.*, 2023, 6, 5331-5341.
- J. Li, C. Xing, Y. Zhang, T. Zhang, M. C. Spadaro, Q. Wu, Y. Yi, S. He, J. Llorca, J. Arbiol, A. Cabot and C. Cui, *Small*, 2021, 17, 2006623.
- S. Li, R. Ma, J. Hu, Z. Li, L. Liu, X. Wang, Y. Lu, G. E. Sterbinsky, S. Liu, L. Zheng, J. Liu, D. Liu and J. Wang, *Nat. Commun.*, 2022, 13, 2916.
- K. Xiang, Z. Song, D. Wu, X. Deng, X. Wang, W. You, Z. Peng, L. Wang, J.-L. Luo and X.-Z. Fu, J. Mater. Chem. A, 2021, 9, 6316-6324.
- 52. Q. Yang, C. Zhang, B. Dong, Y. Cui, F. Wang, J. Cai, P. Jin and L. Feng, *Appl. Catal. B-Environ*, 2021, **296**, 120359.
- M. Khan, M. I. Abdullah, A. Samad, Z. Shao, T. Mushiana, A. Akhtar, A. Hameed, N. Zhang, U. Schwingenschlögl and M. Ma, *Small*, 2023, 19, 2205499.
- 54. M. Li, D. Zhang, Y. Yi, B. Xue and B. Liu, *Electrochim. Acta*, 2022, **423**, 140566.
- Y. Hao, D. Yu, S. Zhu, C. Kuo, Y. Chang, L. Wang, H. Chen, M. Shao and S. Peng, *Energ. Environ. Sci*, 2023, 16, 1100-1110.
- Z. Tang, Y. Wang, W. Qian, Z. Piao, H. Wang and Y. Zhang, J. Colloid Interf. Sci., 2023, 652, 1653-1664.
- 57. K. Deng, P. Liu, X. Liu, H. Li, W. Tian and J. Ji, Green Chem., 2023, 25, 9837-9846.
- Y. Liang, Z. Song, Y. Zhang, B. Zhao, X. Wang, K. Xiang, Z. Ge, X. Fu and J. Luo, *Acs Appl. Nano. Mater.*, 2021, 4, 8723-8732.
- 59. Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang and C. Li, Nat. Commun., 2022, 13, 4602.
- 60. X. Yue, S. Liping, H. Lihua and Z. Hui, Acs Appl. Nano. Mater., 2023, 6, 10312-10321.
- 61. D. Wu, J. Hao, W. Wang, Y. Yu, X. Fu and J. Luo, *ChemSusChem*, 2021, 14, 5450-5459.
- B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui, J.-X. Luo, L. Wang, J. Zhang, J.-L. Luo and X.-Z. Fu, *Appl. Catal. B-Environ*, 2021, 285, 119800.