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1. Experimental 

1.1 Reagents and Materials.

All chemicals and solvents are used as purchased in this work without 

further purification: Terephthalic acid (H2BDC, 97%), cobalt nitrate 

(Co(NO3)2·6H2O, AR, 99%, Aladdin), ferric nitrate (Fe(NO3)3·6H2O, AR, 

99%, Aladdin), indium nitrate (In(NO3)2·6H2O, AR, 99%, Aladdin), 

deionized water (DI H2O, 18 MΩ), N,N'-dimethyformamide (DMF, 

≥99.8%, Aladdin), ethanol (EtOH, >99%, GC, Aladdin) and Nafion (5 

wt%, DuPont).

1.2 Synthesis of MIL-68

After 30 minutes of ultrasonic treatment, the In(NO3)3•6H2O (250 mg) 

and H2BDC (125 mg) are completely dissolved in solution of DMF (6.5 

mL). Then, the homogeneous solution is transferred to a 25 mL glass 

bottle and placed in the oven at 85 oC for 6 hours. The obtained crystals 

are soaked in EtOH for 24 hours to replace the guest molecules and 

washed three times with EtOH to obtain the pure MIL-68. 

1.3 Synthesis of MIL-68-FeCo/MIL-68-Fe/MIL-68-Co

Co(NO3)2·6H2O (72 mg)+Fe(NO3)3·6H2O (28 mg) and MIL-68 (30 mg) 

are mixed with DMF (3 mL) and H2O (3 mL) in a pressure-resistant pipe, 

then heated at 120 °C for 6.5 hours. After cooling to room temperature, 

the product is collected by centrifugation at 10000 rpm, then washed 

three times with ethanol and finally vacuum-dried at 85 °C overnight. 
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The synthesis scheme for MIL-68-Co and MIL-68-Fe follows the same 

steps as the scheme outlined for MIL-68-FeCo, with the addition of 

Co(NO3)2·6H2O (100 mg) and Fe(NO3)3·6H2O (28 mg), respectively.

1.4 Synthesis of MIL-68-C/MIL-68-Fe-C/MIL-68-Co-C/MIL-68-

FeCo-C

The as-obtained MIL-68/MIL-68-Fe/MIL-68-Co/MIL-68-FeCo is 

transferred into a chemical vapour deposition (CVD) tube furnace and 

carbonized at 850 oC for 2 hours under the Ar atmosphere (the heating 

rate of 10 oC min-1). The resultant samples are denoted as MIL-68-

C/MIL-68-Fe-C/MIL-68-Co-C/MIL-68-FeCo-C.
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2 Apparatus and Physical Measurement. 

2.1 General Instruments. 

Scanning electron microscopy (SEM) data are obtained within a JSM-

6700F field emission scanning electron microscope at 10 kV. High-

resolution transmission electron microscope (HR-TEM) and energy 

dispersive spectroscopy (EDS) are collected on a JEOL JEM2100F 

microscope at a high voltage of 200 kV. N2 sorption is performed in the 

Accelerated Surface Area and Porosimetry System 2020 (ASAP 2020) at 

77 K. The powder X-ray diffraction patterns (PXRD) are acquired with a 

Bruker D8 Advance using Cu Kα radiation (0.154 nm). Raman spectra 

are obtained in Renishaw instrument (in Via-Reflex) with the 532 nm 

wavelength. X-ray photo electron spectroscopy (XPS) characterizations 

are carried out on a high resolution electron energy analyzer (Gamma 

data-Scienta SES 2002) using monochromatic Al Kα X-rays.

2.2 Electrochemical Characterizations. 

All electrochemical data are collected by using a CHI760E and/or 

Autolab electrochemical workstation. The OER measurements are tested 

in 1.0 M KOH solution by utilizing a typical three-electrode system, the 

GCE (glass carbon electron) with catalyst ink, a platinum net, and a 

Hg/HgO electrode as the working, counter, and reference electrodes, 

respectively. Meanwhile, we chose Hg/HgO as the reference electrode to 

guarantee accuracy and repeatability in the alkaline medium. All 
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electrochemical tests in our work are performed without iR corrected. We 

dispersed 5 mg of target powder with 50 μL of Nafion (5%), 150 μL DI 

H2O and 300 μL of ethanol, followed by the ultrasonic treatment for 2 h, 

and then a 6 μL catalyst ink is dropped on the surface of a GCE electrode 

and allowed to dry under ambient conditions for 2-3 h. On the contrary, 

the cyclic voltammogram (CV) is conducted at a scan rate of 10/50 mV 

s−1; meanwhile, the linear sweep voltammetry (LSV) is recorded at a scan 

rate of 5 mV s−1, and the electrochemical impedance spectroscopy (EIS) 

measurements are tested at the frequencies ranging from 105 to 10−1 Hz, 

with 1.075 V (vs. RHE). The electrochemical double layer capacitance 

(Cdl) curves of different samples are measured by using CVs in a non-

Faradaic region (0.95-1.04 V vs RHE) at different scan rates of 20, 40, 60, 

80, 100 and 120 mV s−1. Electrocatalytic stability is tested using the 

Amperometric i-t curve test at a consistent potential of 1.55 V (vs. RHE) 

for 20 h. All potentials of electrochemical measurement are transferred to 

the reversible hydrogen electrode (RHE) scale by the following equation: 

ERHE=EHg/HgO+(0.059*pH)+0.197, The overpotential (η) is calculated as 

follows: η=E(V vs. RHE)-1.23, according to O2/H2O equilibrium (1.23 V 

vs. RHE). The Tafel slope is transferred according to Tafel equation as 

follows: η=b·log(j/j0). 
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Figure S1. Coordination environments of two types of secondary 

building units of a) InO6-1; b) InO6-2 in the In-based MIL-68.
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Figure S2. Coordination environments of two types of deprotonated 

BDC2- ligands of a) BDC-1; b) BDC-2 in the In-based MIL-68.
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Figure S3. The side views of a) undoped MIL-68 and b) FeCo-doped 

MIL-68.
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Figure S4. The PXRD patterns of MIL-68-Co and MIL-68-Fe. 
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Figure S5. a) The SEM image of MIL-68; b-c) Particle size distribution 

of MIL-68.



Journal Name  COMMUNICATION

11

Please do not adjust margins

Please do not adjust margins

Figure S6. The SEM images of a) MIL-68-FeCo; b) MIL-68; c) MIL-68-

Fe and d) MIL-68-Co. 
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Figure S7. The TGA curves of MIL-68-FeCo-C and MIL-68-C. 
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Figure S8. The SEM images of a) MIL-68-Fe-C; b) MIL-68-Co-C.
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Figure S9. The SEM images of a) MIL-68-FeCo-C; b-c) TEM image of 

MIL-68-FeCo-C; d) Particle size distribution of FeCo alloy nanoparticles 

in MIL-68-FeCo-C. 
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Figure S10. The full survey XPS spectrum of MIL-68-C-FeCo-C.



Journal Name  COMMUNICATION

16

Please do not adjust margins

Please do not adjust margins

Figure S11. The high-resolution XPS spectra of (a) Fe 2p and (b) Co 2p 

for MIL-68-C-FeCo-C.



Journal Name  COMMUNICATION

17

Please do not adjust margins

Please do not adjust margins

Figure S12. The high-resolution XPS spectra of (a) O 1s and (b) C 1s for 

MIL-68-C-FeCo-C.
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Figure S13. The LSV curves before and after iR-Corrected.
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Figure S14. The LSV curves of various Fe/Co ratios in the MIL-68-

FeCo-C series. 
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Figure S15. The η10 comparison of various electrocatalysts.
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Figure S16. The CV curves from 20 to 120 mV s-1 of (a) MIL-68-FeCo-

C; (b) MIL-68-Co-C; (c) MIL-68-Fe-C; (d) MIL-68-C and (e) RuO2 in 

1.0 M KOH.
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Figure S17. The calculated free energy diagrams of different surface 

models of Co-CoFe and Co with G1 values of 1.2 and 1.56 eV, 

respectively (Ref1). 
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Figure S18. The PXRD patterns of MIL-68-FeCo-C before and after 

OER.
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Figure S19. The TEM image of MIL-68-FeCo-C after OER.
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Table S1. Crystal Data for the In-based MIL-68.

Items MIL-68

CCDC 1811824

Formula C24H0In3O15

Mass 733.13

crystal system Orthorhombic

space group Cmcm

a (Å) 21.892(10)

b (Å) 37.916(8)

c (Å) 7.2570(15)

α (°) 90.00

β (°) 90.00

γ (°) 90.00

V(Å3) 6024(3)

T (K) 125(2)

Z 4

F(000) 1644

Rint 0.0179

R1 (I>2σ(I)) 0.0837

wR2 (all reflections) 0.1922

Ref.2: For more details on the crystal structure data, please see the previously 
published works, Inorganic Chemistry, 2008, 47, 11892-11901.
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Table S2. Electrochemical Parameters of MIL-68-FeCo-C, MIL-68-

Fe-C, MIL-68-Co-C, MIL-68-C, RuO2.

Samples η10

(mV)
Tafel slope
(mV dec-1)

Cdl

(mF cm-2)
Rct

(Ω)

MIL-68-FeCo-C 298 58.6 2.80 5.75

MIL-68-Fe-C 476 85.9 1.59 18.4

MIL-68-Co-C 372 63.3 1.28 19.0

MIL-68-C ＞500 106.7 1.16 23.2

RuO2 331 60.7 2.26 183.8
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Table S3. OER Performance Comparison between MIL-68-FeCo-C and 

Other Electrode Materials.

Samples Electrolyte η10

(mV)
Tafel slope
(mV dec-1) Reference

MIL-68-FeCo-C 1.0 M KOH 298 58.6 This work

A2.7B‐MOF‐FeCo1.6 1.0 M KOH 288 39.0 Ref.3

BMM-10-Fe-H 1.0 M KOH 260 137.4 Ref.4

FeCoSe@NCNSs 1.0 M KOH 320 95.1 Ref.5

BMM-10-Fe-L(600) 1.0 M KOH 316 119.8 Ref.6

Fe-NiO/NF 1.0 M NaOH 305 65.3 Ref.7

NP/NiO 1.0 M NaOH 332 65.6 Ref.8

CuO-NiO/NF 1.0 M NaOH 319 86.4 Ref.9

Ni-MOF@Fe-MOF 1.0 M KOH 265 82.0 Ref.10

FeNi/PNG 1.0 M KOH 353 80.0 Ref.11

Co/CoP 1.0 M KOH 340 79.5 Ref.12

Co-P film 1.0 M KOH 345 47.0 Ref.13

Ni3Fe−Co9S8/rGO 0.1 M KOH 390 109.8 Ref.14

Co2P/CNT-900 1.0 M KOH 292 68.0 Ref.15

Ag@CoxP 1.0 M KOH 310 76.4 Ref.16

Fe-FeNi3/NC 0.1 M KOH 360 82.0 Ref.17

The loading mass of the catalyst in this work is 0.85 mg cm-2.
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