Supporting Information

Effect of pretreatment conditions on Fe-ZSM-5 properties and performance for Fischer-Tropsch synthesis

Jane N. Agwara¹, Denis Leshchev², Sinhara M.H.D. Perera¹, Alexis K. Bauer³, Michael L. Neidig³, and Marc D. Porosoff^{1*}

¹Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, USA.

²National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973,

USA.

³Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks

Road, Oxford OX1 3QR, United Kingdom.

*Corresponding author: Prof. Marc D. Porosoff, 4405 Wegmans Hall, Phone: (+1) 585-276-7401,

Email: <u>marc.porosoff@rochester.edu</u>

Table S1. CO conversion and selectivity averaged between 9-12 hours on stream of Fe-Na-
ZSM-5 pretreated in H ₂ or CO at temperatures ranging from 300 -770 °C.

		CO						
	Reduction	Conversion	C ₂ -C ₄		C_2-C_4			Carbon
Catalyst	Gas	(%)	Olefins	C ₅₊	Paraffins	CH ₄	CO ₂	Balance
H ₂ -350	H ₂	10.6	19.0	14.0	13.4	22.5	31.1	97.2
H ₂ -450	"	9.6	21.9	17.8	15.0	19.1	26.2	97.4
H ₂ -550	"	8.8	24.1	26.1	5.3	19.6	24.9	98.4
H ₂ -770	"	3.4	28.2	25.4	3.5	20.0	22.9	99.2
CO-300	CO	10.8	21.1	17.6	8.9	37.6	14.8	98.0
CO-490	"	8.0	15.3	36.0	11.3	28.1	9.3	99.2
CO-750	"	5.5	10.0	18.8	12.3	48.8	10.1	99.0

Reaction conditions: catalyst mass = 50 mg, temperature = 300 °C, pressure = 300 psig, $H_2/CO = 2$, $H_2 = 20$ ml/min, CO = 10 ml/min, and Ar = 15 ml/min as internal standard.

	Selectivity (%)												
Catalyst	Ethylene	Propylen e	Isobut ylene	Cis & Trans-2- butene	1-3- butadiene	Ethane	1-butene	Propane	Butane	Pentane	iso- pentane	Hexane	Unspecified C ₅₊
H ₂ -350	3.1	9.4	0.4	1.9	4.1	7.8	-	2.9	2.6	1.1	0.2	1.0	11.7
H ₂ -450	4.5	10.7	0.8	4.3	1.6	6.6	-	3.4	5.1	2.5	-	1.3	14.0
H ₂ -550	7.2	10.2	-	5.7	0.7	2.2	0.3	1.1	2.0	5.5	0.3	2.0	18.3
H ₂ -770	8.8	10.9	-	7.7	0.7	1.7	0.1	1.0	0.8	10.7	0.2	3.0	11.5
CO-300	6.1	9.3	-	5.0	0.6	6.0	0.1	1.7	1.1	5.6	0.3	1.6	10.1
CO-490	1.7	7.3	0.5	1.1	4.4	5.4	0.3	2.7	3.2	3.3	0.6	1.2	30.9
CO-750	1.8	5.0	-	2.6	0.4	6.5	0.2	3.1	2.5	2.1	0.5	0.6	15.6

Table S2. Hydrocarbon product selectivity averaged between 9-12 hours on stream of Fe-Na-ZSM-5 pretreated in H₂ or CO at temperatures ranging from 300 -770 °C.

Figure S1. Hydrogen temperature programmed reduction, H_2 -TPR (a), and carbon monoxide temperature programmed reduction, CO-TPR (b) of the Fe-Na-ZSM-5 catalyst.

Figure S2. Thermogravimetric analysis (TGA) of Fe-Na-ZSM-5 pretreated in H₂.

Sample	CO Uptake (µmol/g)
H ₂ -350	12.0
H ₂ -450	21.5
H ₂ -550	27.8
H ₂ -770	10.0
CO-300	13.2
CO <u>-</u> 490	2.3
CO-750	7.8

Fable S3. CO Uptake of the Pre	treated Fe-Na-ZSM-5 Samples
---------------------------------------	-----------------------------

Figure S3. Mossbauer spectra of Fe-Na-ZSM-5 pretreated in CO at 300 °C (a), 490 °C (b), 750 °C (c), in H_2 at 350 °C (d), and fresh Fe-Na-ZSM-5 (e).

Table S4. Summary of 57 Fe Mössbauer Parameters of Fe-Na-ZSM-5 pretreated in CO at 750 $^{\rm o}{\rm C}.^{1-3}$

	Fe ²⁺	α-Fe	Fe ₂ O ₃	Fe-ZSM-5: Fe ²⁺ oxo
δ	1.00	0.00	0.48	1.26
∠E	1.88	0.23	0.88	3.04
FWHM	0.50	0.41	0.45	0.49
H int (kG)	-	337	-	-
Area (%)	7	57	12	21

	Fe ²⁺	α-Fe	Fe ₂ O ₃	Fe-ZSM-5: Fe ²⁺ oxo
δ	1.00	0.00	0.48	1.26
∠E	1.88	0.23	0.88	3.04
FWHM	0.50	0.41	0.45	0.49
H int (kG)	-	337	-	-
Area (%)	9	12	20	65

Table S5. Summary of ⁵⁷Fe Mössbauer Parameters of Fe-Na-ZSM-5 pretreated in H₂ at 770 °C.

Figure S4. Fe K-edge X-ray absorption near-edge structure (XANES) spectra of iron standards: Fe foil, FeO, Fe₃O₄, Fe₂O₃, and as-synthesized Fe-Na-ZSM-5.

	Activation	СО						
	Gas/flowrate	Conversion						Carbon
Activation	(mL/min)	(%)	C ₂ -C ₄		C ₂ -C ₄			Balance
Temp (C)			Olefins	C ₅₊	Paraffins	CH ₄	CO ₂	
300	CO/20	10.8	21.1	17.6	8.9	37.6	14.8	98.0
300	$H_{2}/40$	4.7	18.7	17.8	15.4	25.2	22.9	98.8

Table S6. CO conversion and selectivity averaged between 9-12 hours on stream of Fe-Na-ZSM-5 pretreated in H_2 or CO at a similar temperature of 300 °C.

References

1. Agwara, J. N.; Bakas, N. J.; Neidig, M. L.; Porosoff, M. D., Challenges and Opportunities of Fe - based Core - Shell Catalysts for Fischer - Tropsch Synthesis. *ChemCatChem* **2022**, *14* (19), e202200289.

2. Yang, X.; Wang, R.; Yang, J.; Qian, W.; Zhang, Y.; Li, X.; Huang, Y.; Zhang, T.; Chen, D., Exploring the reaction paths in the consecutive Fe-based FT catalyst–zeolite process for syngas conversion. *ACS Catalysis* **2020**, *10* (6), 3797-3806.

3. Fierro, G.; Moretti, G.; Ferraris, G.; Andreozzi, G. B., A Mössbauer and structural investigation of Fe-ZSM-5 catalysts: Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8. *Applied Catalysis B: Environmental* **2011**, *102* (1-2), 215-223.