## Supporting Information

## Synergism between B-N atomic pair for promoting the catalytic cracking of 1,2-dichloroethane

Yaqi Yao<sup>a,b</sup>, Hongying Zhuo<sup>a\*</sup>, Fanan Wang<sup>c</sup>, Guiyue Bi<sup>a,d</sup>, Jinming Xu<sup>a\*</sup>, Xiaofeng

Yang<sup>a</sup>, Yanqiang Huang<sup>a</sup>

<sup>a</sup> State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, China.

° Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou

350118, China.

<sup>d</sup> Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.

\*Corresponding authors.

E-mail: zhuohongying@dicp.ac.cn (Hongying Zhuo); xujm@dicp.ac.cn (Jinming Xu)



Figure S1 Structure of the hydrogen-terminated graphene nanoribbon with armchair

edge.



Figure S2 SEM images of (a) BNC-500, (b) BNC-600, (c) BNC-700, (d) BNC-800, (e) BNC-900, (f) BNC-1000.



Figure S3 SEM images of (a) NC-500, (b) NC-600, (c) NC-700, (d) NC-800, (e) NC-900, (f) NC-1000.



Figure S4 SEM images of (a) BC-500, (b) BC-600, (c) BC-700, (d) BC-800, (e) BC-900, (f) BC-1000.



Figure S5 SEM images of (a) C-500, (b) C-600, (c) C-700, (d) C-800, (e) C-900, (f) C-1000.



Figure S6 TEM images and elemental distribution mapping of C, B, N in (a) BNC-500, (b) BNC-600, (c) BNC-800, (d) BNC-900 and (e) BNC-1000.



Figure S7 XRD patterns and peak shift of (a) BNC-500, (b) BNC-600, (c) BNC-700, (d) BNC-800, (e) BNC-900 and (f) BNC-1000.



Figure S8 Raman spectra of (a) BNC with different calcination temperature and (b) NC, BC, C calcinated at 700  $^{\circ}C$ 



Figure S9 Pore size distribution of BNC



Figure S10 (a) XPS of N1s of NC; (b) XPS of B1s of BC.



Figure S11 Different doping sites of B and their energy difference corresponding

to a.



Figure S12 Thermogravimetric analysis curves recorded in air atmosphere and the removal of C, O and N in (a) BNC-500, (b) BNC-700 and (c) BNC-1000 catalysts before and after reaction

| ENCUT (eV) | $E_{\rm gas+cat}~({\rm eV})$ | $E_{Cat} (eV)$ | $E_{\rm gas+cat}~({\rm eV})$ | DE (eV)     |
|------------|------------------------------|----------------|------------------------------|-------------|
| 350        | -832.4023028                 | -794.5408574   | -37.70712987                 | -0.15431551 |
| 400        | -831.5463520                 | -793.6631224   | -37.70712987                 | -0.17609973 |
| 450        | -831.1237741                 | -793.2398526   | -37.70712987                 | -0.17679165 |
| 500        | -831.0193745                 | -793.1388791   | -37.70712987                 | -0.17336549 |

Table S1 The effect of the testing parameters on the energy.

| Vacuum layer (Å) | $E_{\rm gas+cat}({ m eV})$ |
|------------------|----------------------------|
| 15               | -831.55424365              |
| 20               | -831.54635200              |
| 25               | -831.54279351              |

Table S2 The convergence test data of the vacuum layer

| KPOINT | $E_{\rm gas+cat}~({\rm eV})$ |
|--------|------------------------------|
| 1X1X1  | -831.18945286                |
| 2X1X1  | -831.54635200                |
| 3X3X3  | -831.54279351                |

Table S3 The K-Point convergence test data

| Sample | $S_{BET}(m^{2}/g)$ | $V_{pore}$ (cm <sup>3</sup> /g) | $V_{meso}$ (cm <sup>3</sup> /g) |
|--------|--------------------|---------------------------------|---------------------------------|
| C-500  | 307                | 0.17                            | 0.046                           |
| C-600  | 308                | 0.19                            | 0.035                           |
| C-700  | 325                | 0.21                            | 0.042                           |
| C-800  | 314                | 0.18                            | 0.015                           |
| C-900  | 217                | 0.14                            | 0.059                           |
| C-1000 | 17                 | 0.023                           | 0.022                           |

Table S4 Physical structure of C catalyst.

| 5       | 5                  |                                 |                                 |
|---------|--------------------|---------------------------------|---------------------------------|
| Sample  | $S_{BET}(m^{2}/g)$ | $V_{pore}$ (cm <sup>3</sup> /g) | $V_{meso}$ (cm <sup>3</sup> /g) |
| BC-500  | 346                | 0.22                            | 0.033                           |
| BC-600  | 336                | 0.20                            | 0.021                           |
| BC-700  | 352                | 0.22                            | 0.029                           |
| BC-800  | 381                | 0.24                            | 0.027                           |
| BC-900  | 246                | 0.16                            | 0.058                           |
| BC-1000 | 286                | 0.14                            | 0.17                            |
|         |                    |                                 |                                 |

Table S5 Physical structure of BC catalyst.

|         | jj                           |                                 |                                 |
|---------|------------------------------|---------------------------------|---------------------------------|
| Sample  | $S_{BET}\left(m^{2}/g ight)$ | $V_{pore}$ (cm <sup>3</sup> /g) | $V_{meso}$ (cm <sup>3</sup> /g) |
| NC-500  | 103                          | 0.15                            | 0.11                            |
| NC-600  | 120                          | 0.16                            | 0.13                            |
| NC-700  | 111                          | 0.14                            | 0.10                            |
| NC-800  | 127                          | 0.17                            | 0.12                            |
| NC-900  | 118                          | 0.21                            | 0.17                            |
| NC-1000 | 115                          | 0.20                            | 0.15                            |
|         |                              |                                 |                                 |

Table S6 Physical structure of NC catalyst.

| 1                |       |       |       |       |       |       |
|------------------|-------|-------|-------|-------|-------|-------|
| T (°C)<br>Sample | 500   | 600   | 700   | 800   | 900   | 1000  |
| NC               | 16.3  | 14.4  | 10.2  | 8.37  | 6.69  | 5.05  |
| BC               | 0.225 | 0.369 | 0.336 | 0.277 | 0.231 | 0.233 |
| С                | 0.327 | 0.388 | 0.420 | 0.368 | 0.330 | 0.185 |
|                  |       |       |       |       |       |       |

Table S7 EDC conversion of NC, BC, C catalyst with different calcination temperature.

| Sample        | Pyridinic N | Pyrrolic N | Graphitic N | Oxide N | B-N   |
|---------------|-------------|------------|-------------|---------|-------|
| BNC-500       | 35.15       | 43.66      | 7.75        | 7.35    | 6.09  |
| BNC-500-used  | 29.46       | 41.28      | 18.15       | 6.51    | 4.60  |
| BNC-700       | 25.65       | 28.14      | 23.06       | 7.80    | 15.36 |
| BNC-700-used  | 22.72       | 30.21      | 37.27       | 4.82    | 4.99  |
| BNC-1000      | 14.02       | 12.52      | 53.33       | 9.06    | 11.08 |
| BNC-1000-used | 8.59        | 16.15      | 63.44       | 6.26    | 5.56  |

Table S8 The content of different N species in BNC catalyst before and after reaction.

| Sample  | Pyridinic N | Pyrrolic N | Graphitic N | Oxide N |
|---------|-------------|------------|-------------|---------|
| NC-500  | 48.92       | 39.17      | 7.28        | 4.63    |
| NC-700  | 38.63       | 31.97      | 23.69       | 5.71    |
| NC-1000 | 24.08       | 15.68      | 53.47       | 6.77    |

Table S9 The content of different N species in NC catalyst

| 5             | 5                  |                       |                       |
|---------------|--------------------|-----------------------|-----------------------|
| Sample        | $S_{BET}(m^{2/g})$ | $V_{pore} (cm^{3}/g)$ | $V_{meso} (cm^{3/g})$ |
| BNC-500-used  | 83                 | 0.30                  | 0.28                  |
| BNC-600-used  | 85                 | 0.31                  | 0.29                  |
| BNC-700-used  | 80                 | 0.46                  | 0.45                  |
| BNC-800-used  | 69                 | 0.38                  | 0.38                  |
| BNC-900-used  | 74                 | 0.35                  | 0.34                  |
| BNC-1000-used | 73                 | 0.36                  | 0.35                  |
|               |                    |                       |                       |

Table S10 Physical structure of BNC catalyst after reaction.