Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting information

Fabrication of the direct Z-scheme heterojunction of UiO-66-NH₂ and tubular g-C₃N₄ for stable photocatalytic reduction of CO₂ to CO and CH₄

Hongyang Liu, Yang Yang, Chaojun Guo, Yonghua Zhou*

College of Chemistry and Chemical Engineering, Central South University, Changsha

410083, China

Schematic S1. The schematic of the photocatalytic reactor and the CO₂ reduction experiment conducted.

Fig. S1. SEM images of TCN (a) and SCN (b).

	Atomic%					
	С	N O		Zr		
UNH	53.98	5.36	33.93	6.74		
T/U-0.65	51.51	31.37	15.6	1.52		

Table S1. XPS elemental content of UNH and T/U-0.65.

500 Quantity Adsorbed (cm³/g STP) 400 UNH 300 200 T/U-0.65 100 TCN 0 0.2 0.0 0.4 0.6 0.8 1.0 Relative Pressure (P/P₀)

Fig. S2. N₂ adsorption-desorption isotherms of TCN, pure UNH and T/U-0.65.

	S_{BET} (cm ² /g)	$V_{total}(cm^{3}/g)$	V _{mic} (cm ³ /g)	V _{mes} (cm ³ /g)
TCN	58	0.27	0.014	0.13
UNH	1172	0.69	0.44	0.25
T/U-0.65	592	0.68	0.20	0.48

Table S2. S_{BET} and pore volume data for TCN, pure UNH and T/U-0.65.

Fig. S3. Mott-Schottky curves of SCN (a), TCN (b) and pure UNH (c).

Fig. S4. XRD patterns (a) and TEM images (b, c) of fresh and used T/U-0.65 catalyst.

Catalysts	CO and CH ₄ yields (µmol g ⁻¹ h ⁻¹)	S _{CH4} (%)	Reaction time(h)	Reducing agent	References
UiO-66-NH ₂ /Cu ₂ O/Cu- 0.39	CO: 4.54	0	12	H ₂ O	1
f-MoS ₂ @UiO-66-NH ₂	CO : 23.16 CH ₄ : 27.18	82.44	25	H ₂ O, MeCN	2
8%NU66/CIS	CO : 11.24 CH ₄ : 2.92	51	18	H ₂ O	3
NH ₂ -UiO-66/CuZnS	CO : 22.85	0	14	water vapor	4
UNH/Ce (HCOO) ₃ - 1.80	CO : 16.45 CH ₄ : 29.4	84	15	H ₂ O, TEOA	5
NU/CC-1.6-90	CO : 20.6 CH ₄ : 14	73	15	H ₂ O, TEOA	6
UiO-66(NH ₂)/HGN	CO: 31.6 CH ₄ : 1.82	18.7	48	H ₂ O, TEOA	7
T/U-0.65	CO: 4.33 CH ₄ : 14.68	93.1	40	H ₂ O, TEOA	This work

 Table S3. Comparison of CO2 photoreduction performance over some reported catalysts and this work.

References

- S1 X. X. Zhao, L. L. Sun, X. Jin, M. Y. Xu, S. K. Yin, J. Z. Li, X. Li, D. Shen, Y. Yan and P. W. Huo, *APPL SURF SCI*, 2021, 545, 148967.
- S2 X. Yang, T. Y. Wang, H. Y. Ma, W. L. Shi, Z. Q. Xia, Q. Yang, P. Zhang, R. Ma, G. Xie and S. P. Chen, J MATER SCI TECHNOL, 2024, 182, 210-219.
- S3 L. F. Hong, R. T. Guo, Z. W. Zhang, Y. Yuan, X. Y. Ji, Z. D. Lin and W. G. Pan, *J CO₂ UTIL*, 2021, 51, 101650.
- S4 J. T. Sun, Y. C. Guan, G. Z. Yang, S. X. Qiu, H. L. Shao, Y. Wang, G. S. Li and S. N. Xiao, ACS SUSTAIN CHEM ENG, 2023, 11, 14827-14840.
- S5 N. C. Yuan, Y. X. Mei, Y. W. Liu, Y. T. Xie, B. N. Lin and Y. H. Zhou, J CO₂ UTIL, 2022, 64, 102151.
- S6 Y. X. Mei, N. C. Yuan, Y. T. Xie, Y. P. Li, B. N. Lin and Y. H. Zhou, APPL SURF SCI, 2022, 597, 153725.
- S7 Y. N. Wang, L. N. Guo, Y. Q. Zeng, H. W. Guo, S. P. Wan, M. Ou, S. L. Zhang and Q. Zhong, ACS APPL MATER INTER, 2019, 11, 30673-30681.