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Figure S1. The variation of Bz-CHO and Bz-COOH formations with the time in the Bz-OH 

oxidations performed by changing initial Bz-OH concentration at 80oC and 120oC, using 

molecular oxygen as the oxidant. (A) Bz-CHO and Bz-COOH formation profiles at 80oC, Bz-

OH concentration (mM): (i) 48.1, (ii) 96.2, (iii) 192.4, (B) Bz-CHO and Bz-COOH formation 

profiles at 120oC, Bz-OH concentration (mM): (i) 48.1, (ii) 96.2, (iii) 192.4, Common conditions: 

DEGDME: 2.5 mL, O2 flow rate: 0.015 L/min, MIL-100(V) concentration for the runs performed 

at 80oC: 32 mg/mL, MIL-100(V) concentration for the runs performed at 120oC: 8 mg/mL. 
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Figure S2. The variation of Bz-CHO and Bz-COOH formations with the time in the Bz-OH 

oxidations performed by changing air flow rate at 80oC and 120oC. (A) Bz-CHO and Bz-COOH 

formation profiles at 80oC, Air flow rate (L/min): (i) 0.05, (ii) 0.075, (iii) 0.150, (B) Bz-CHO and 

Bz-COOH formation profiles at 120oC, Air flow rate (L/min): (i) 0.05, (ii) 0.075, (iii) 0.150, 

Common conditions: DEGDME: 2.5 mL, MIL-100(V) concentration for the runs performed at 

80oC: 32 mg/mL, MIL-100(V) concentration for the runs performed at 120oC: 8 mg/mL.
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Table S1. The comparison of TOF values obtained for this study with the those obtained with 

different catalysts synthesized for oxidation of benzyl alcohol. 

Catalyst Oxidation 
agent

Temperature Catalyst/Bz-OH ratio 
(mol/mol)

TOF(h-1) Reference

Pd/CeO2 O2 120oC 0.009 350000a,b,c S1

PA-Na-1 O2 140oC 0.0001 106200a,b,c,d S2

In2O3@Pd/MCF-H2 O2 110oC 0.03 49400a,c,d S3

Au/Mg3Al-L O2 80oC 0.002 2615a,b,e S4

Au/S1CNT O2 50oC 0.002 2294a,b,e S5

Pd/CeO2-R O2 90oC 0.0002 1290c S6

AuxPdy/CNT O2 80oC 0.007 1274a,b S7

Pd-IL-HNTs H2O2 70oC 20 mg/2.88mmol 118.1a,b S8

Pt/5MnNS O2 25oC 0.09 1.8a S9

SO4
-2/Zr-OMC TBHP 90oC 0.099 34668a,b,d S10

FeSA/MoS2 O2 120 oC 0.001 2105f S11

CuxOy@PCNs-H2O2 TBHP 80oC 0.018 535.5a,b S12

[{VO(OEt)(EtOH)}2(L2)] TBHP RT 0.002 389f S13

AuSn/rGO-CoIM O2 100oC 0.018 103.6a,e S14

MOF-BASU1 TBHP 80oC 0.008 77.6f S15

[Mn(bipy)2]2+HMS TBHP 90 oC 0.0013 21.28f S16

Im-Tpy@Co Air RT 0.2 34.17f S17

Co@NC O2 60oC 0.046 15.6f S18

VOx@SiO2 PMS 25oC 0.025 0.075a,d S19

MIL-100(V) O2 120oC 0.001 497f This work

MIL-100(V) O2 80oC 0.006 68.3f This work

a: Based on Bz-OH conversion, b: Based on metal surface dispersion, c: Based on only Pd, d: Calculated 
from the data reported in the reference, e: Based on only Au, f: TOF= nMain product / (nvanadiumxtreaction) where 
nMain product is the mole of main product, nvanadium: mole of vanadium in MIL-100 (V), treaction : is the reaction 
period for obtaining 80 % of Bz-OH conversion. 
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Figure S3. The variation of Bz-CHO and Bz-COOH formations with the time in the Bz-OH 

oxidations performed using different radical scavengers at two different reaction temperatures. 

Temperature and type of radical scavenging agent: (A) Bz-CHO and Bz-COOH formation 

profiles at 80oC, Scavenger type: (i) L-AA, (ii) IPA, (iii) NaN3, (B) Bz-CHO and Bz-COOH 

formation profiles at 120oC, Scavenger type: (i) L-AA, (ii) IPA, (iii) NaN3, Common conditions: 

Bz-OH initial concentration: 98.2 mM, O2 flow rate: 0.015 L/min, DEGDME: 2.5 mL, MIL-100(V) 

concentration for the runs performed at 80oC: 32 mg/mL, MIL-100(V) concentration for the runs 

performed at 120oC: 8 mg/mL.
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Figure S4. The SEM photographs of MIL-100(V) (A) after using five consecutive Bz-OH 

oxidation runs at 80oC, (B) after using five consecutive Bz-OH oxidation runs at 120oC. 

Common conditions: Bz-OH initial concentration: 98.2 mM, O2 flow rate: 0.015 L/min, 

DEGDME: 2.5 mL, MIL-100(V) concentration for the runs performed at 80oC: 32 mg/mL, MIL-

100(V) concentration for the runs performed at 120oC: 8 mg/mL.

Figure S5. X-ray diffraction spectra of MIL-100(V) after using five consecutive Bz-OH oxidation 

runs performed at (A) 80oC and (B) 120oC. The reaction conditions are given in Figure S4. 
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Figure S6. X-ray photoelectron spectroscopy of MIL-100(V) after using five consecutive Bz-

OH oxidation runs at 80oC. (A): (i) Survey XPS spectrum, Core level spectra for (ii) V 2p scan, 

(iii) C 1s scan, (iv) O 1s scan. Bz-OH oxidation conditions are given in Figure 9. X-ray 

photoelectron spectroscopy of MIL-100(V) after using five consecutive Bz-OH oxidation runs 

at 120oC. (B): (i) Survey XPS spectrum, Core level spectra for (ii) V 2p scan, (iii) C 1s scan, 

(iv) O 1s scan. The reaction conditions are given in Figure S4.
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