Electronic supporting Information

Highly efficient cobalt catalysts promoted by CeO₂-Al₂O₃ for ammonia

decomposition

Kai Xu,^{† a, b} Na Jiang,^{† b} Peng Wang,^a Wei-Wei Wang,^{* b} Chun-jiang Jia^{* b}

^aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

^bKey Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

⁺ These authors contributed equally: Kai Xu, Na Jiang.

Fig. S1 Temperature-dependent activities of the Co-based catalysts. (a) $CoCeO_x$ catalysts with different Co/Ce ratio; (b) $CoCeAlO_x$ catalysts with different Ce/Al ratio; (c) $Co_9RE_{0.5}Al_{0.5}O_x$ catalysts with different rare earth elements (Sm, Y, La, Ce); (d) $Co_{4.5}Ni_{4.5}Ce_{0.5}Al_{0.5}O_x$ and $Co_9Ce_{0.5}Al_{0.5}O_x$

To investigate the impact of component concentrations on the ammonia decomposition reaction, we assessed the reactivity of the catalysts with different mole ratios of Co, Ce and Al element. As the ratio of Co:Ce decreased (Fig. S1a), a pronounced decline in activity of the $Co_aCe_bO_x$ catalysts occurred. Therefore, it inferred that cobalt species was the main active species for ammonia decomposition, whilst ceria acted as an assisting promoter. From Fig. S1b, it could be observed that the second round NH₃ conversion of $Co_9Ce_{0.8}Al_{0.2}O_x$ decreased by approximately 9% as the mole ratio reduced from 0.5 to 0.2. This indicated the vital role of alumina in preserving stability of activity. Additionally, the catalysts obtained by replacing Ce with other rare earth elements delivered inferior activity compared to CoCeAlO_x, demonstrating the unique advantages of Ce for applying in ammonia decomposition reaction (Fig. S1c). And $Co_{4.5}Ni_{4.5}Ce_{0.5}Al_{0.5}O_x$ showed lower activity than $Co_9Ce_{0.5}Al_{0.5}O_x$ (Fig. S1d).

Fig. S2 TEM images of the as-prepared samples. (a) CoCeO_x; (b) CoAlO_x; (c) CoCeAlO_x; (d) Co₃O₄

Fig. S3 TEM images of the used samples. (a) CoCeO_x; (b) CoAlO_x; (c) CoCeAlO_x

Fig. S4 The EDS elemental mappings of the CoCeAlO_x sample after long-term stability tests

Fig. S5 The physical properties of the catalysts. (a, c) The N_2 adsorption-desorption isotherms of the as-prepared (a) and used (c) samples; (b, d) BJH pore size distributions of the as-prepared (b) and used (d) samples

Fig.S6 The Raman spectra of the samples after long-term stability tests

Fig.S7 Arrhenius plots for the catalysts (CoCeAlO_x, CoCeO_x and CoAlO_x) in the kinetic range

Fig. S8 The Reaction orders of the N_2 for CoCeAlO_x, CoCeO_x and CoAlO_x

Fig. S9 The desorption signals of H_2 (m/z=2) in NH₃-TPD over CoCeAlO_x, CoCeO_x, CoAlO_x and Co₃O₄ catalysts.

The H_2 signal of all related samples was shown in Fig. S9. It exhibited poor data quality, causing no efficient information could be obtained. The greater capacity of CoCeAlO_x for the suppression of hydrogen poisoning could be clearly concluded by the reaction order of H_2 (Fig. 7b).

 Samples	Co loading (wt%)	Ce loading (wt%)	Al loading (wt%)	_
 CoCeAlO _x	60.0	7.4	2.4	_
CoCeO _x	58.1	13.1	_	
CoAlO _x	66.6	—	5.8	

 Table S1
 The ICP-AES results of various samples.

Catalysts	Surface area (m ² g ⁻¹) ^a	Size of Co $_3O_4$ (nm) $^{\rm b}$	Size of CeO $_2$ (nm) $^{\rm b}$
CoCeAlO _x	119.4	8.7	\
CoAlO _x	83.3	15.2	١
CoCeO _x	54.0	9.6	5.4
C0 ₃ O ₄	46.6	17.1	١

 Table S2 Physical properties of the as-prepared samples.

a Measured by N_2 adsorption-desorption experiments.

b Evaluated by XRD results using Debye-Scherrer equation.

Catalysts	Surface area (m ² g ⁻¹) ^a	Size of Co (nm) $^{\rm b}$	Size of CeO ₂ (nm) $^{\rm b}$
CoCeAlO _x	40.1	10.3	١
CoAlO _x	30.0	15.3	١
CoCeO _x	38.2	21.2	9.1
C0 ₃ O ₄	5.7	32.0	١

 Table S3 Physical properties of the used samples.

a Measured by N₂ adsorption-desorption experiments.

b Evaluated by XRD results using Debye-Scherrer equation.

	Binding Energy (eV)		
Samples	Co ³⁺	Co ²⁺	Co ^o
CoCeAlO _x	779.8, 794.8	781.5, 796.5	778.3, 793.3
CoCeO _x	779.8, 794.8	781.5, 796.5	778.4, 793.4
CoAlO _x	780.1, 795.1	781.8, 796.8	778.3, 793.3

Table S4 The peak center of different Co species (Co^{3+} , Co^{2+} , Co^{0}) in XPS.

	Binding Energy (eV)		
Samples	Ce ³⁺	Ce ⁴⁺	
CoCeAlO _x	903.9, 899.0, 885.4, 880.5	916.3, 907.3, 900.7, 897.8, 888.8, 882.2	
CoCeO _x	903.9, 899.3, 885.4, 880.8	916.3, 907.6, 900.7, 897.8, 889.1, 882.2	

Table S5 The peak center of different Ce species (Ce^{3+} , Ce^{4+}) in XPS.

Catalysts	Co ⁰ /(Co ³⁺ +Co ²⁺ +Co ⁰)	Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)
CoCeAlO _x	19.1%	34.5%
CoAlO _x	22.1%	١
CoCeO _x	16.0%	27.5%

Table S6 The elements and surface composition analyzed by the XPS data of the used catalysts