Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

## **Supplementary Information**

Thermal Deactivation of Pd/Al<sub>2</sub>O<sub>3</sub>-Cu/Al<sub>2</sub>O<sub>3</sub>-combined Three-way Catalysts via Cu Migration and Alloying

Zannatul Mumtarin Moushumy,<sup>1</sup> Marina Takeuchi,<sup>1</sup> Masayuki Tsushida,<sup>2</sup> Keisuke Awaya,<sup>3</sup> Hiroshi Yoshida,<sup>4</sup> Junya Ohyama,<sup>3,5</sup> Masato Machida\*<sup>3,5</sup>

<sup>1</sup> Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, 860-8555, Japan

<sup>2</sup> Technical Division, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, 860-8555, Japan

<sup>3</sup> Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan

<sup>4</sup> Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

<sup>5</sup> Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan

\* machida@kumamoto-u.ac.jp



**Figure S1.** Schematic diagram of the gas feeds for thermal aging under SLR and L conditions. SLR: three simulated gas feeds, that is, a stoichiometric gas (S, 40 s), a fuel-lean gas (L, 10 s), and a fuel-rich gas (R, 10 s), were cycled sequentially. L: constant lean condition. Detailed gas compositions are shown below. The gas feed was supplied at a total flow rate of 100 mL min<sup>-1</sup>. Gas compositions for each condition are shown below.

| Aging                                | Stoichiometric (S) <sup>b</sup> | Lean $(L)^{b}$ | Rich (R) <sup><math>b</math></sup> | Air     |
|--------------------------------------|---------------------------------|----------------|------------------------------------|---------|
| Air-to-fuel ratio (A/F) <sup>a</sup> | 14.6                            | -              | 13.0                               | -       |
| Excess oxygen ratio                  | 1.0                             | 18.2           | 0.06                               | -       |
| CO/%                                 | 0.50                            | 0.50           | 0.50                               | -       |
| C <sub>3</sub> H <sub>6</sub> /ppm   | 400                             | 400            | 400                                | -       |
| NO/ppm                               | 500                             | 500            | 500                                | -       |
| O <sub>2</sub> /%                    | 0.4                             | 8              | 0                                  | 18      |
| H <sub>2</sub> O/%                   | 10                              | 10             | 10                                 | 10      |
| $N_2$                                | balance                         | balance        | balance                            | balance |

<sup>*a*</sup> The A/F value was calculated in accordance with a reported study<sup>1</sup> using the excess oxygen ratio of the simulated gas feed, which is calculated as follows:

Excess oxygen ratio =  $\frac{\text{Amount of oxygen in gas feed}}{\text{Amount of oxygen required for complete oxidation}} = \frac{2 \times p_{02} + p_{N0}}{9 \times p_{C3H6} + p_{C0}}$ 

<sup>b</sup> During SLR cycle aging, three gas feeds, that is, S (40 s), L (10 s), and R (10 s), were cycled sequentially.

Exposure to 10% H<sub>2</sub>O/air flow without any exhaust gas mixture leads to an Air-aged Pd–Cu composite catalyst (Pd/A+Cu/A-Air). For Air aging, approximately 0.2 g of catalysts was placed into a preheated tubular furnace at the desired temperature. Following a 5-h exposure to 10% H<sub>2</sub>O/air stream, the catalyst was removed from the furnace and cooled in air at room temperature. For L and SLR aging, approximately 0.2 g of catalysts was heated from room temperature to each

aging temperature ( $600^{\circ}C-900^{\circ}C$ ) for 2 h under N<sub>2</sub> flow. When the desired aging temperature was achieved, N<sub>2</sub> was replaced by a simulated exhaust gas mixture as shown in the above table. Three different gas feeds, including a stoichiometric gas (A/F = 14.6, 40 s), a lean gas (8% O<sub>2</sub>, 10 s), and a rich gas (A/F = 13.0, 10 s), were cycled sequentially, ending with the stoichiometric portion of the cycle at the end of the aging period of 5 h for L and SLR aging. After L and SLR aging, the catalyst bed was cooled under N<sub>2</sub> flow, and Pd/A+Cu/A-L and Pd/A+Cu/A-SLR catalysts were obtained, respectively.



**Figure S2.** Light-off curves of NO, CO, and C<sub>3</sub>H<sub>6</sub> during the first, second, and third light-off runs in the simulated TWC reaction over Cu/A after thermal aging under air.



**Figure S3.** Light-off curves of NO, CO, and  $C_3H_6$  during the first, second, and third light-off runs in the simulated TWC reaction over Pd/A+Cu/A-Air, Pd/A+Cu/A-L, and Pd/A+Cu/A-SLR catalysts with different aging temperatures: (a) 600°C, (b) 700°C, (c) 800°C, and (d) 900°C.



**Figure S4**. *T*<sup>50</sup> values of NO, CO, and C<sub>3</sub>H<sub>6</sub> during the first, second, and third light-off runs in the simulated TWC reaction for Pd/A catalysts after thermal aging at elevated temperatures under Air, L, and SLR conditions. The light-off curves for each plot are shown in Figure S5.



**Figure S5.** Light-off curves of NO, CO, and C<sub>3</sub>H<sub>6</sub> during the first, second, and third light-off runs in the simulated TWC reaction over Pd/A-Air, Pd/A-L, and Pd/A-SLR catalysts with different aging temperatures: (a) 600°C, (b) 700°C, (c) 800°C, and (d) 900°C.



**Figure S6**. Phase relationships in the partial oxygen pressure versus temperature plots of the Pd– O and Cu–O systems. Red and green curves represent the equilibrium of PdO–Pd and CuO– Cu<sub>2</sub>O–Cu, respectively, and other dashed curves correspond to the thermal aging atmosphere.



**Figure S7**. Lattice constant estimation of the Pd–Cu alloys formed in Pd/A+Cu/A-SLR after aging at 800°C and 900°C. The blue circles correspond to Pd–Cu alloys found in the literature data.<sup>2-5</sup> Pd–Cu alloys observed in Pd/A+Cu/A-SLR are shown as yellow and red circles.



**Figure S8**. XRD patterns of Pd/A+Cu/A-Air and Pd/A+Cu/A-L catalysts (aged at 800°C) after stoichiometric TWC light-off runs (three runs).

## REFERENCES

1. Tanaka, H.; Fujiwara, H.; Takahashi, I., Excellent Oxygen Storage Capacity of Perovskite-Pd Three-Way Catalysts. *SAE Paper* **1995**, 950256.

2. M. Friedrich and M. Armbrüster, *Chem. Mater.*, 2009, **21**, 5886-5891.

3. K. Baba, U. Miyagawa, K. Watanabe, Y. Sakamoto and T. B. Flanagan, *J. Mater Sci.*, 1990, **25**, 3910-3916.

3. O. Loebich and C. J. Raub, J. Less Common Metals, 1977, 55, 67-76.

4. W. E. Krull and R. W. Newman, J. Appl. Crystallogr., 1970, **3**, 519-521.