Supporting Information for 'Insight into the Influence of Re and Cl on Ag

Catalysts in Ethylene Epoxidation'

Section A. XPS data

- 12 Figure S1 shows X-ray photoemission spectra of Re/α-Al₂O₃ samples and Ag-Re/α-Al₂O₃ samples. XP
- spectra were fitted with CasaXPS (version 2.3.23) by a non-linear least-squares fitting algorithm using
- mixed Gaussian-Lorentzian (30/70) curves after linear background subtraction. The binding energy was
- 15 calibrated using the Al 2p peak at 74.4 eV as a reference. Re $4f_{5/2}$ and $4f_{7/2}$ peaks were fitted with a
- 16 fixed energy difference of 2.43 eV and a fixed 4f_{5/2}/4f_{7/2} peak area ratio of 0.75. A linear background
- was used instead of a Shirley type background, since there were also contributions of the Ag 4p peak
- and the Ca 3s peak, and possibly a loss peak of the O 2s. These contributions would mostly affect the
- Re 4f peaks of the 0.4Re and 0.4Re-Ag samples.

20 **Figure S1.** X-ray photoelectron spectra of the Re 4f region of Re on α-alumina (A-C) and Re-Ag on α-21 Al₂O₃ samples (D-G). Backgrounds are in black, Gaussian-Lorentzian fits of the 4f5/2 and 4f7/2 peaks 22 are depicted in light grey (Re⁷⁺) and dark grey (Re⁶⁺), and the total fits are depicted in orange.

24 The ratio between Re^{6+}/Re^{7+} was calculated using the combined $4f_{5/2}$ and $4f_{7/2}$ peak areas of both

25 components, and is listed for each sample in Table S1.

26 Table S1. Re 4f ratios between Re⁶⁺ and Re⁷⁺ determined using the total peak areas of each component.

27

28 In addition, the effect of reductive and oxidative atmospheres during the chemisorption experiments 29 on the AgReO₄, 4Re and 4Re-Ag samples was investigated with X-ray photoelectron spectroscopy (XPS) 30 using a Kratos Axis Supra+ apparatus, featuring an X-ray photoelectron spectrometer equipped with a 31 hemispherical energy analyzer and a monochromatic Al K_{α} source. The survey spectra were recorded 32 with a pass energy of 160 eV and the high resolution spectra with 20 eV. The X-ray spot size was set to 33 300-700 μm (slot) during the analyses. All samples were pressed into a quartz stub. Samples were 34 treated under static conditions (technical air (20% O_2 in N₂) or 100% H₂) at 1-1.5 bar. First a cleaning 35 step was done by an oxidative treatment at 215 °C in technical air, with a heating ramp of 5 °C min⁻¹ 36 and an isothermal step for 1h. This was followed by a reduction step at the same temperature in H_2 37 for 1h, after which a final oxidation step was performed at 215 °C in technical air for 4 h. Spectra were 38 collected after the sample had cooled down (<100 °C) and was transferred to the analysis chamber 39 (pressure \approx 7 x 10⁻¹² bar) after each gas treatment. A charge neutralizer was used to minimize charging 40 of the sample surfaces. The spectra were referenced to the Ag 3d peak with a binding energy of 41 368.3 eV. XP spectra of the AgReO₄ sample after the three gas treatments are shown in Figure S2. To 42 resolve the Re 4f peak, a Shirley background was used and Gaussian-Lorentzian peak fitting.

After the first oxidation of the sample (Figure S2A), Re 4f consists of most likely two components: $Re⁷⁺$ 44 and a lower oxidation state of rhenium, likely Re^{6+} . After reduction the spectrum still indicates the 45 presence of Re^{7+} (Figure S2B). However, also peaks from lower oxidation states down to Re^{0} appear. 46 The spectral fits focussed on the determination of the Re^{7+} fraction and the presence of the Re^{0} 47 component. Chemical speciation of the other Re oxidation states has not been conducted. After re-

48 oxidation. Re^{7+} becomes the most dominant phase again.

49

50 **Figure S2.** X-ray photoelectron spectra of the AgReO₄ sample after oxidation (A), reduction (B), and re-51 oxidation treatment (C) at 215 °C.

52 The relative fractions of each rhenium chemical state within the AgReO₄, 4Re-Ag and 4Re samples after 53 the different treatments were calculated from deconvoluted peak area, which were corrected with a 54 relative sensitivity factor, transmission function and inelastic mean free path (Table S2). It is clear from 55 these experiments that the Re is reduced during the reduction treatment, but that the re-oxidation 56 treatment recovers most of the Re⁷⁺, especially for the AgReO₄ and 4Re-Ag samples which contain 93% 57 and 96% Re^{7+} , respectively.

58 **Table S2**. Overview of Re 4f fractions within the AgReO4, 4Re-Ag and 4Re samples after oxidation, 59 reduction, and re-oxidation treatment at 215 °C.

			Fraction of Re 4f (%)				
Treatment	Sample	$Re7+$	$Re^{2+ to 6+}$	Re ⁰	Retotal		
	AgReO ₄	93	$\overline{7}$	$\mathbf 0$	100		
Oxidation	4Re-Ag	92	8		100		
	4Re	90	10	$\mathbf 0$	100		
	AgReO ₄	9	67	24	100		
Reduction	4Re-Ag	22	76	$\overline{2}$	100		
	4Re	42	46 11		100		
	AgReO ₄	93	$\overline{7}$	$\mathbf 0$	100		
Re-oxidation	4Re-Ag	96	4	$\mathbf{0}$	100		
	4Re	68	32	$\mathbf{1}$	100		

Section B. Additional XRD data

61 Figure S3 shows the XRD of 4Re (Re/ α -Al₂O₃). Only α -alumina peaks were detected, while ReO_x peaks

62 were not. This means that the amount of $Re₂O₇$ present in this sample was either below the detection

- limit of the instrument, or it was not crystalline enough to be detected. Small diffraction peaks around
- 64 28, 37, 46 and 56 ° 2θ are satellite peaks of α-Al₂O₃ due to reflections by Co k_β which are not filtered
- 100%.
-

67 **Figure S3**. X-ray diffractogram of 4Re. The theoretical stick diffraction pattern of α-Al₂O₃ is shown below in grey.

69 After deposition of Ag on the Re-doped α -Al₂O₃ and varying the calcination time from 2 to 12 h, XRD and Rietveld refinements were performed using Bruker TOPAS software. The diffractograms of these samples as well as corresponding fits are shown in Figure S4. Diffractograms and fits of freshly 72 prepared AgReO₄ on α -Al₂O₃ and after various treatments (catalysis, isomerization, chemisorption) are shown in Figures S5 and S6.

74 For all fits, a 3rd order Chebychev background and Lorentzian peak fitting were used. First α-alumina 75 peaks were refined, followed by Ag, and then AgReO₄. When ReO₂ peaks were detected in the diffractogram, they were refined afterwards. Sample displacement was refined after fitting the various phases and fixed afterwards. Table S3 summarizes the results of all fits.

Figure S4. X-ray diffractograms (black) of Re-doped Ag catalysts with fits (red) and difference between

the diffractogram and the fit (grey). 2Re-Ag is shown in (A), 4Re-Ag after 2 h calcination in (B), 4Re-Ag

after 6 h calcination in (C) and 4Re-Ag after 12 h calcination in (D).

84 **Figure S5.** X-ray diffractograms of as prepared AgReO₄, after chemisorption, EO isomerization, and

85 epoxidation. Theoretical stick diffraction patterns of α-Al₂O₃ and AgReO₄ are depicted below the

86 diffractograms. Diffraction peaks of ReO₂ (\triangle) and Ag (\bullet) are annotated accordingly. The diffraction

87 peak after epoxidation around 38 ° *2θ* (■) is either AgO or AgCl.

88 **Figure S6.** X-ray diffractograms (black) of AgReO₄ samples after various treatments with fits (red) and 89 difference between the diffractogram and the fit (grey). The as prepared AgReO₄ sample after heat 90 treatment at 500 °C (A), after EO isomerization (B), after O₂ chemisorption (C) and after ethylene epoxidation (D).

XRD measurements.

Sample	α -Al ₂ O ₃ (%)	Ag (%)	$AgReO4$ (%)	ReO ₂ (%)	R_{wp}
2Re-Ag	87.9	11.8	0.3		8.5
4Re-Ag					
2 _h	89.2	10.3	0.5		8.0
After catalysis (EC)	88.5	11.0	0.5		8.1
After isomerization	88.6	11.1	0.3		7.4
After catalysis and isomerization (EC)	88.6	10.9	0.5		7.6
6h	89.2	10.0	0.8	$\qquad \qquad \blacksquare$	8.2
12h	88.4	10.8	0.8		7.9
AgReO ₄					
500 °C	89.2	-	10.8	-	7.6

⁹² **Table S3.** Overview of crystalline phases present in the different Re-Ag and AgReO₄ samples based on

96 **Section C. O2 chemisorption isotherms**

97 O₂ chemisorption was performed with Re/α-Al₂O₃ and Re-Ag/α-Al₂O₃ samples. Isotherms are shown in 98 Figure S7. For Re-Ag samples containing 2 and 4 at% Re, pressures up to 0.5 bar were needed to obtain 99 saturation, compared to Ag and 0.4Re-Ag which saturated below 0.25 bar. The 2Re sample was also

- 100 measured until 0.5 bar to confirm whether 0.25 or 0.5 bar was required.
- 101 O_2 chemisorption was also conducted with 80-90 mg of the Ag and 4Re-Ag catalysts after they had 102 been stabilized in the ethylene epoxidation reaction for ca. 50 h with a maximum EC concentration of 103 1 ppm (Figure S7D). For these measurements, the used samples were evacuated for 30 min at 100 °C 104 and 60 min at 215 °C prior to the O_2 analysis. Both samples showed an O_2 uptake of ca. 105 2.8 μ mol₀₂ g_{sample}^{-1} . It seems that after catalysis the available Ag sites for both catalysts are similar. 106 Repeating the measurement for the used 4Re-Ag with the typically used H_2 pretreatment (as described 107 in Section 2.2 of the main text) resulted in an O₂ uptake of 69 μ mol_{O2} g_{sample}^{-1} . Note that the O₂ uptake 108 for the fresh 4Re-Ag catalyst was 75 μ mol₀₂ g_{sample}^{-1} . After catalysis the O₂ uptake of the 4Re-Ag catalyst 109 can almost be fully regained after a treatment in H_2 .

110 **Figure S7.** O₂ chemisorption isotherms of the Ag catalyst compared with 0.4Re-Ag (A), 2Re and 2Re-Ag 111 (B), 4Re and 4Re-Ag (C), and Ag and 4Re-Ag used in ethylene epoxidation with ethyl chloride in the 112 feed (D). For the used Ag catalyst no pretreatment was performed before the O_2 analysis. The used 113 4Re-Ag catalyst was first analyzed without pretreatment and afterwards with pretreatment in H_2 at 114 215 °C (following the earlier used protocol for all the fresh catalysts).

- 115 AgReO₄/ α -Al₂O₃ was also characterized with O₂ chemisorption. Figure S8 shows the effect of measuring
- 116 these samples multiple times, as well as measuring with different equilibration times.

117 **Figure S8.** O₂ chemisorption isotherms of the AgReO₄ sample, studying the effect of equilibration time

and order of measuring. In (A) the equilibration times were varied with first 10 s, another 10 s, and

- then 100 s. In (B) the order was 10 s, 100 s, and 10 s.
-

Section D. Additional catalytic data

- Catalytic data of all the discussed catalysts are shown in Figure S9. Typically, 100 mg catalyst was tested
- 123 with 500 mg SiC at 215 °C, with 7.5 vol% O₂, 7.5 vol% C₂H₄, 0-3 ppm EC in He. For 0.4Re-Ag, 2Re-Ag and
- 124 4Re-Ag the total gas flow was varied from 16-66 mL min⁻¹, whereas the Ag and AgReO₄ catalysts were
- 125 only tested at 66 mL min⁻¹.

 Figure S9. Catalytic data of 0.4Re-Ag, 2Re-Ag, 4Re-Ag (A and B), Ag (C) and AgReO4 (D) at ethyl chloride (EC) concentrations between 0-3 ppm at 215 °C. Total gas flows were varied in A and B, and in C and D 129 the total gas flow was kept at 66 mL min⁻¹.

- To evaluate the effect of EC at lower concentrations, Ag and 4Re-Ag were tested with 0-1 ppm EC
- (Figure S10). For these tests, 100 mg catalyst was tested without SiC as these were also used for EO 133 isomerization afterwards. The total gas flow was kept at 66 mL min⁻¹.
-

 Figure S10. Catalytic tests of Ag (A) and 4Re-Ag (B) without SiC at 215 °C, with varying EC concentrations between 0-1 ppm.

- Ag and 0.4Re-Ag catalysts were also tested with 0.25-1 ppm EC in the feed (Figure S11). Catalysts were
- diluted with SiC and tested at similar conditions as described earlier.
-

Figure S11. Ethylene conversion (A) and EO selectivity (B) of Ag (black) and 0.4Re-Ag (blue) at 215 °C

with varying EC concentrations between 0.25-1 ppm.

- Figure S12 summarizes all the catalytic data from Figures S9-S11, where ethylene conversion and EO
- selectivity is plotted as a function of EC concentration, in a total gas flow of 66 mL min⁻¹. Open symbols

- **Figure S12.** Overview of all catalytic tests with ethylene conversion versus EC concentration (A) and
- EO selectivity versus EC concentration (B). Open symbols depict tests without SiC.

148 **Section E. Calculated equilibrium concentrations**

- 149 Equilibrium concentrations of AgReO₄, Ag and ReO_x were calculated for the synthesis of Re-promoted
- 150 Ag catalysts using HSC software [1]. Figure S13 shows the results of this calculation. It is clear that the
- 151 formation of AgReO₄ is favored during calcination of Ag and Re₂O₇ species in an O₂-rich atmosphere.

152 **Figure S13.** Equilibrium calculations using HSC for the system containing 10 kmol Ag, 0.1 kmol Re₂O₇ 153 and 10 kmol O₂. This composition mimicks that of during calcination treatment of a sequentially 154 impregnated Re-Ag catalyst. The results clearly show that the formation of AgReO₄ is 155 thermodynamically favorable.

156 Equilibrium concentrations of AgReO₄ and Re₂O₇ were calculated for EO isomerization experiments 157 without and with O_2 in the feed using HSC software [1]. Figure S14 shows the results of these 158 calculations as a function of temperature. Starting concentrations were 10 kmol AgReO₄ or 10 kmol 159 Re₂O₇, 1 kmol ethylene oxide, 0.5 kmol acetaldehyde, and for the experiment with oxygen 10 kmol O₂. 160 Ag, ReO₂, Re₂O₇, Re₂O₃ and ReO₃ were selected as possible solid phases, and C₂H₄, CO₂, and H₂O as 161 possible gas phases.

162 **Figure S14.** Equilibrium concentrations calculated with HSC for AgReO₄ in EO isomerization without O₂ 163 (A) and with O_2 (B) in the feed, as well as for Re_2O_7 without O_2 (C) and with O_2 (D).

164 Without O_2 in the feed, AgReO₄ reduces to Ag, ReO₂ and ReO₃. Re₂O₇ reduces to ReO₃. With O₂ in the

165 feed, AgReO₄ and Re₂O₇ are stable phases.

Section F. EO isomerization and stacked bed studies

168 During EO isomerization experiments without O_2 in the feed, ethylene was detected for the 4Re, 4Re-169 Ag and AgReO₄ samples. To evaluate if ethylene formed from ethylene oxide or acetaldehyde in the gas feed, stacked bed experiments were performed (Figure S15). In these experiments, the goal was 171 to convert all the EO to acetaldehyde (AA). 100 mg of α -Al₂O₃ at 215-295 °C did not result in a full conversion of EO to AA, but 20 mg of γ-Al2O3 at 295 °C did (Frame A). The results of the stacked bed experiments at 295 °C were compared with EO isomerization experiments with the catalyst only 174 (Frame B). Tests with Ag did not result in ethylene formation. AgReO₄ in stacked-bed experiments resulted in trace amounts of ethylene, compared to the catalyst-only experiment. Possibly, not all the 176 EO was converted to AA, or AgReO₄ sample particles were present in the top part of the stacked bed.

177 **Figure S15.** Acetaldehyde (AA) yields with different Al₂O₃ supports and temperatures (A), and comparing stacked-bed experiments with regular EO isomerization experiments at 295 °C (B).

180 The conversion of ethylene oxide to ethylene should result in the formation of $O₂$, and possibly also 181 the formation of CO₂ as a result of combustion with ethylene (oxide) or acetaldehyde. Figure S16 shows 182 the O₂ concentration and CO₂ selectivities of Ag, 4Re, 4Re-Ag and AgReO₄. For all samples, there is less 183 O₂ in the feed compared to a test with an empty reactor. It is therefore difficult to quantify the amount 184 of O_2 formed during isomerization. The samples can also chemisorb O_2 at the same temperature, which 185 might underestimate the O_2 formation. Ag also shows a decreasing CO_2 selectivity over time, which 186 suggests that the concentration of O_2 depletes over time. This might be explained by the desorption 187 of weakly adsorbed oxygen from the surface.

188 **Figure S16.** O₂ concentration during EO isomerization without O₂ in the inlet feed (A), and 189 corresponding CO₂ selectivities (B).

190 After ethylene epoxidation/stabilization with EC in the feed, the Ag catalyst showed a decreased EO 191 conversion as opposed to experiments without EC. To confirm this behavior, another 15 wt% Ag 192 catalyst was tested for 50 h using similar reaction conditions (with EC) and afterwards tested in the EO 193 isomerization reaction (Figure S17). This other catalyst was prepared using a different BASF Al-4196 α -194 alumina batch than before, and the silver precursor was decomposed with 100% O₂ instead of 25% O₂ 195 in N₂. Ag particle sizes are 50 and 53 nm, respectively, determined with H₂ titration. Except for a higher 196 EO selectivity during catalysis, which we ascribe to the different α -alumina batch, the EO conversion 197 with EC is similar.

198 **Figure S17**. Catalysis data of two Ag catalysts decomposed with 25% or 100% O₂ and supported on different batches of α-alumina (A) together with corresponding EO isomerization data with 1 ppm ethyl chloride (B).

Section G. Additional SEM data of used catalysts

 After ethylene epoxidation, the Re-promoted Ag catalysts were characterized with SEM to determine the surface averaged particle diameter of the used catalysts. Figure S18 shows SEM images of the used Ag, 0.4Re-Ag, 2Re-Ag and 4Re-Ag catalysts, together with the corresponding histograms of the fresh and used (stabilized) particle diameters. Particle diameters have increased from 70-80 nm to approximately 90 nm. This means that after ethylene epoxidation with EC in the feed, the Re promotion did not influence the Ag particle growth compared to the non-promoted Ag catalyst.

 Figure S18. SEM images of the used Ag (A), 0.4Re-Ag (B), 2Re-Ag (C) and 4Re-Ag (D) catalysts with corresponding histograms of the fresh and used particle diameter distributions below. Catalysts after testing with EC during ethylene epoxidation for ca. 50 h. Surface averaged particle diameters (*d*p,s) are also shown. For each sample, more than 200 Ag particles were measured.

References

[1] A. Roine, HSC Chemistry Software, (2023). www.metso.com/hsc.