
S1

Accelerated Design of Nickel-Cobalt Based Catalysts for CO2 
Hydrogenation with Human-in-the-Loop Active Machine Learning

Yasemen Kuddusi1,2,* , Maarten R. Dobbelaere3, Kevin M. Van Geem3, Andreas Züttel1,2

1Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and 
Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne 
(EPFL) Valais/Wallis, Energypolis, Rue de l’Industrie 17, 1951 Sion, Switzerland 
2Empa Materials Science & Technology, 8600 Dübendorf, Switzerland 

3Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical 
Engineering, Ghent University, Technologiepark 125, 9052 Gent, Belgium
 

* Corresponding author: yasemen.kuddusi@epfl.ch 

SUPPORTING INFORMATION

Supplementary Information (SI) for Catalysis Science & Technology.
This journal is © The Royal Society of Chemistry 2024

mailto:yasemen.kuddusi@epfl.ch


S2

S1. Code Availability

The entire source code is provided as open-source software under MIT license in the following 

repository: https://www.github.com/mrodobbe/gandalf-doe. All conclusions from the paper can be 

reproduced using the provided scripts. A demo notebook is available in the folder 

notebooks/demo.ipynb.

S2. Hyperparameter Optimization

The key hyperparameters of each model were optimized via grid search. The optimized 

hyperparameters are marked in bold.

S2.1. Extreme Gradient Boosting

Extreme gradient boosting (XGB) models are created with the open-source software XGBoost 

(version 1.6.2) in python 3.7. The following XGB hyperparameters are optimized via grid search:

 Number of estimators: [500, 1000, 2500, 5000, 10000]

 Maximum depth: [2, 3, 4]

 Learning rate: [0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75]

 Subsample: [0.05, 0.1, 0.25, 0.5, 0.6, 0.7, 0.75, 1]

 Tree method: [histograms, exact]

S2.2. Random Forests

Random forests (RF) regressors are implemented via scikit-learn (version 1.3.2 in python 3.11). 

The following RF hyperparameters are optimized via grid search:

 Number of estimators: [100, 500, 1000]

 Maximum depth: [None, 2, 5]

https://www.github.com/mrodobbe/gandalf-doe
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 Maximum features: [sqrt, log2]

 Minimal samples per split: [2, 5, 10]

S2.3. Gaussian Processes

Gaussian process regression (GP) is implemented via GPy (version 1.12 in python 3.7). The 

following GP hyperparameters are optimized via grid search:

 Kernel: [Rational quadratic, exponential, linear, Matérn 32, Matérn 52, radial basis 

function]

S3. Gaussian n-dimensional Active Learning Framework (GandALF)

The Gaussian n-dimensional Active Learning Framework (GandALF) was applied in this study 

and in this section, we repeat the working principle of this algorithm [1].

GandALF is a versatile design-of-experiments tool that can handle continuous, discrete, and 

categorical variables. It selects the next experiment or set of experiments based on 

informativeness, representativeness, and diversity. The informativeness criterion imposes that an 

experiment should be chosen so that it adds information to the model while minimizing the 

information redundancy. An experiment is representative when it follows the distribution of 

experiments and is not an outlier. The diversity is guaranteed when experiments are selected that 

are sufficiently different from each other. Before initiating the experiments, a pool of P unlabeled 

data points is drawn from the design space. Here, the pool size P is kept at the default size of 

100,000. The initial experiments are selected by clustering the pool of potential experiments into 

 (in this work:  = 5) initial experiments using the k-means algorithm [2]. The centroid of 𝑛𝑖𝑛𝑖𝑡 𝑛𝑖𝑛𝑖𝑡

every cluster is picked as an initial experiment. The selection of the centroid ensures that the most 
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representative experiment is chosen, hence ensuring the representativeness of the initial 

experiments. 

A Gaussian process with a radial basis function (RBF) kernel is used as surrogate model. The 

Gaussian process surrogate model is created a first time using the initial experiments, after which 

GandALF chooses new experiments. From the second iteration on, a new pool is drawn from the 

design space with P equal to , with  the number of previously performed experiments. 20,000 × 𝑛 𝑛

Then, this pool is divided in  clusters. The selection process solely considers experiments 𝑛+ 1

from the largest  empty clusters. The original GandALF version was fully sequential and, 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

therefore,  was equal to 1. In this work,  is set to 3. We define an empty cluster as a 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

cluster that only contains unlabeled, potential experiments. The choice of the largest clusters 

ascertains that the representativeness criterion is met. Since these clusters are empty, the diversity 

criterion is satisfied. Finally, the next  experiments are drawn from each picked cluster. 𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠

Again, as GandALF was originally fully sequential,  was equal to 1, meaning that 1 𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠

experiment was drawn from the single largest empty cluster. In this work,  is set to 3, 𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠

whereby the constraint is added that the catalyst properties and catalyst treatment are fixed, which 

restricts the diversity criterion. Thus, a maximum of 9 experiments (i.e., ) can 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 × 𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠

be selected per iteration. The next experiments are selected from the empty clusters using the 

expected model outcome change (EMOC) acquisition function [3]. The use of the EMOC 

acquisition function is to ensure that the experiment is informative, as the acquisition function 

requires an accurate determination of the uncertainty of the outcome for a specific experiment.
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S4. Experimental Details

S4.1. Experimental Set-up

Figure S3.1. Plan of the experimental setup with gas supply and controlling unit, the 

microreactor and the gas analysis unit.

S4.2. Catalytic Activity Tests

Table S3.1. Overview of all experiments performed in this work with the experimental variables 

and output metrics.

T 
[K]

P 
[bar]

GHSV 
[ml/h/g]

Ni 
[%]

Co 
[%]

T 
calc 
[K]

T 
red 
[K]

Y 
CH4 
[%]

X 
CO2 
[%]

S 
CH4 
[%]

S 
CO 
[%]

STY 
CH4 

[g/h/gcat]

623 5 12552 14 4 673 823 44.19 48.05 91.97 8.03 0.79

643 5 16375 10 5 873 823 0.00 7.05 0.00 100.00 0.00

643 5 13141 15 5 823 673 4.03 6.81 59.11 40.89 0.08

673 1 3300 15 0 723 773 53.92 62.17 86.73 13.27 0.25

673 1 6598 15 5 723 773 44.47 54.73 81.25 18.75 0.42

633 9 25024 14 10 873 673 5.00 7.21 69.35 30.65 0.18

583 7 20332 14 10 873 673 3.95 5.82 67.90 32.10 0.12

633 7 25070 21 10 673 623 24.49 28.60 85.63 14.37 0.88
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663 9 17236 21 10 673 623 57.34 65.58 87.44 12.56 1.42

603 10 10968 21 10 673 623 24.40 26.26 92.91 7.09 0.38

583 10 14102 21 10 673 623 10.53 11.51 91.49 8.51 0.21

623 1 3271 6 1 623 673 2.00 3.65 54.67 45.33 0.01

583 8 9474 18 2 823 723 7.87 9.51 82.75 17.25 0.11

553 4 11053 18 2 823 723 0.02 1.78 1.38 98.62 0.00

523 4 7895 18 2 823 723 0.00 0.00 0.00 0.00 0.00

613 7 3158 18 2 823 723 20.15 21.60 93.28 6.72 0.09

633 3 9410 20 9 873 873 28.35 31.31 90.54 9.46 0.38

583 1 7841 20 9 873 873 6.31 8.45 74.64 25.36 0.07

653 5 7841 20 9 873 873 37.98 39.41 96.37 3.63 0.43

583 8 16154 8 2 673 673 0.00 0.00 0.00 0.00 0.00

683 4 9532 14 0 623 673 91.15 91.15 100.00 0.00 1.24

713 2 12692 20 6 723 823 74.39 82.13 90.58 9.42 1.35

753 3 11106 20 6 723 823 81.78 85.96 95.13 4.87 1.30

733 7 17452 20 6 723 823 83.61 91.95 90.92 9.08 2.09

593 4 19412 10 3 823 723 0.00 0.00 0.00 0.00 0.00

533 8 24265 10 3 823 723 0.00 0.00 0.00 0.00 0.00

523 1 16176 10 3 823 723 0.00 0.00 0.00 0.00 0.00

583 3 3283 6 7 873 723 3.90 7.40 52.72 47.28 0.02

523 6 9850 6 7 873 723 2.73 7.11 38.35 61.65 0.04

693 2 11379 13 2 873 823 6.60 10.54 62.58 37.42 0.11

753 1 17882 13 2 873 823 13.01 27.64 47.07 52.93 0.33

583 8 6567 8 3 673 773 17.37 18.60 93.38 6.62 0.16

603 5 3284 8 3 673 773 35.57 39.59 89.85 10.15 0.17

693 7 4737 4 7 873 823 44.53 60.42 73.70 26.30 0.30

753 8 11052 4 7 873 823 35.51 60.31 58.88 41.12 0.56

583 3 18060 20 6 673 723 15.60 17.48 89.22 10.78 0.40

543 10 4925 20 6 673 723 21.17 22.25 95.14 4.86 0.15

683 7 21029 7 2 873 673 2.06 11.56 17.80 82.20 0.06

703 5 25882 7 2 873 673 1.46 7.03 20.76 79.24 0.05

713 7 7895 19 7 823 723 74.12 75.65 97.98 2.02 0.84

763 5 15789 19 7 823 723 56.21 68.69 81.84 18.16 1.27

593 4 21557 5 3 723 623 0.00 4.45 0.00 100.00 0.00

523 1 9950 5 3 723 623 0.00 0.00 0.00 0.00 0.00

693 8 6600 7 8 723 773 61.06 71.10 85.89 14.11 0.58

763 10 4950 7 8 723 773 91.53 91.53 100.00 0.00 0.65
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733 10 6600 25 0 623 873 96.08 96.08 100.00 0.00 0.91

763 1 6600 0 10 623 923 31.91 55.21 57.79 42.21 0.30

763 9 8250 0 0 623 873 0.00 11.30 0.00 100.00 0.00

753 4 3300 25 1 623 823 91.10 91.10 100.00 0.00 0.43

643 4 23100 11 3 723 673 4.56 7.98 57.08 42.92 0.15

693 7 16500 19 6 873 823 71.08 71.08 100.00 0.00 1.68

743 5 14850 8 6 773 923 68.48 78.71 87.00 13.00 1.46

563 10 8250 22 7 673 723 14.07 14.07 100.00 0.00 0.17

753 1 16500 16 2 823 823 36.06 58.40 61.75 38.25 0.85

643 7 18150 17 0 723 723 68.31 68.31 100.00 0.00 1.78

563 3 8250 0 9 873 823 2.20 3.71 59.27 40.73 0.03

683 5 16500 23 4 873 923 84.73 84.73 100.00 0.00 2.00

613 6 11550 2 7 673 723 1.28 7.60 16.79 83.21 0.02

733 10 23100 21 3 673 873 93.28 93.28 100.00 0.00 3.09

733 10 3300 20 0 623 873 95.36 95.36 100.00 0.00 0.45

S4.3. TGA Curves

Figure S3.2. Thermogravimetric analysis (TGA) of 15Ni-5Co/Al2O3 under air flow heating up to 

700°C with a heating rate of 5°C/min. Residual mass curve is represented by the black line and 
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differential residual mass curve is represented by the red line. 

Table S3.2. Mass residuals and changes retrieved from TGA of 15Ni-5Co/Al2O3 under air flow 

heating up to 700°C with a heating rate of 5°C/min.

Temperature (°C) Mass change from 30 °C
 (%)

Residual mass from 30 °C
 (%)

350 38.70 61.90

400 39.37 60.61

450 40.05 59.93

500 40.36 59.62

550 40.63 59.35

600 40.83 59.16

650 40.99 58.98

700 41.13 58.85
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S4.4. XPS Spectra

Figure S3.3. Ni 2p XPS spectra of (a) c623 (b) c673 (c) c723 (d) c773 (e) c823 (f) c873. Orange 

species represent NiAl2O4 and blue species represent NiO.
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Table S3.3. ESCA parameters of Ni 2p lines. XPS fitting details for NiO and NiAl2O4 for main and 

satellite peaks. These parameters were retrieved from [4].

Ni 2p3/2 Ni 2p1/2

Main peak Satellite 1 Satellite 2 Main peak Satellite 1 Satellite 2

Eb FWHM Eb Eb Eb FWHM Eb Eb

NiO 854.5 4.1 856.4 861.0 872.3 5.4 874.2 879.7

NiAl2O4 856.0 2.8 858.1 862.3 873.6 3.6 875.7 880.6

Table S3.4. NiO percentages throughout the samples that are calcined at different temperatures.

Sample Coding NiO / (NiO+NiAl2O4)
 at Ni 2p3/2 (%)

NiO / (NiO+NiAl2O4)
 at Ni 2p1/2 (%)

c623 10.52 10.51

c673 11.77 11.78

c723 7.715 7.715

c773 6.590 6.590

c823 3.857 3.857

c873 2.458 2.458



S11

S4.5. Textural Properties

Table S3.5. BET/BJH analysis results. Surface area, average pore volume and average pore size for 

15Ni-5Co/Al2O3 samples that are calcined at various temperatures.

Sample Coding BET surface area 
(m2g-1)

BJH pore volume 
(cm3g-1)

BJH pore 
diameter (nm)

c623 193.69 0.4950 9.7454

c673 199.08 0.5347 10.263

c723 197.89 0.5546 10.649

c773 192.35 0.5570 11.102

c823 193.50 0.5434 10.625

c873 192.79 0.5570 10.915

S5. Mahalanobis Distance Criterion

The Mahalanobis distance (dM) measures the distance between a distribution of data points and a 

single data point. In this case, the distance is measured between a set of experimental variables 

and the training set. It is calculated via eq (S1).

𝑑2𝑀= 𝑧𝑇Λ' ‒ 1𝑧 (S1)

In eq (S1),  is a column vector containing the seven experimental variables and  is the  𝑧 Λ' 7 × 7

covariance matrix of the experimental variables in the dataset.
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S6. SHAP Values

The importance of a feature in a model can be visualized using summary plots. These plots sort 

the features vertically by importance. In each row, the SHAP value per data point is given. The 

color of this dot indicates the value of the feature. For example, a red dot in the temperature row 

indicates a set of experimental variables that includes a high temperature value. Figures S5.1 to 

S5.3 show the summary plots that are created for XGB models trained on CO2 conversion, CH4 

selectivity, and CH4 space-time yield. These summary plots were created using a single model of 

which the hyperparameters were optimized with stratified k-fold cross-validation. The training sets 

were the same of the interpolative model (48 data points collected via active learning). 

Figure S5.1. Summary plot between experimental variable and the impact on the CO2 conversion.
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Figure S5.2. Summary plot between experimental variable and the impact on the CH4 selectivity.

Figure S5.3. Summary plot between experimental variable and the impact on the CH4 space-time 

yield.
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S7. Validation by Kinetic Modeling

A microkinetic model is directly interpretable and it provides a relationship between the catalyst 

structure and its performance. A trade-off lies in the prediction of kinetic parameters. To this 

extent, we make use of the CO2 methanation modeling assumptions set by Mutschler et al. [5]. 

Here, we create a model to validate the obtained results. 

The rate law that was derived in the work of Mutschler et al. [5] was used to calculate the activation 

energy and Arrhenius parameters. Below is a short overview of the equations required to derive 

the activation energy.

The rate is defined as the change in partial pressure of CO2, as shown in equation (S2).

‒
𝑑𝑝𝐶𝑂2

𝑑𝑡
= 𝑟(𝑡) (S2)

We derive the rate law for the kinetically limited zone, in which we assume that the backward 

reaction is close to zero. We define the rate law in equation (S3), in which  is the forward rate 𝑘+

coefficient,  is the partial pressure of CO2,  is the partial pressure of H2, and  and  are the 
𝑝𝐶𝑂2

𝑝𝐻2 𝛼 𝛽

reaction order with respect to CO2 and H2.

𝑟(𝑡) = 𝑘+𝑝 𝛼
𝐶𝑂2

𝑝 𝛽
𝐻2 (S3)

The Arrhenius equation (equation (S4)) relates  with the pre-exponential factor A, the activation 𝑘+

energy EA, the ideal gas constant R, the temperature T.

𝑘+ = 𝐴exp ( ‒ 𝐸𝐴

𝑅𝑇) (S4)

Mutschler et al. [5] further assume that because of the stoichiometry of the reaction and the 

corresponding change in partial pressure (equation (S5)), the reaction orders of CO2 and H2 are 

linked.
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Δ𝑃𝐶𝑂2
=

Δ𝑃𝐻2

4
(S5)

With the relationship between the partial pressures, the reaction rate can be rewritten as given in 

equation (S6).

𝑟(𝑡) = 𝑘+𝑝 𝛼
𝐶𝑂2

(4𝑝𝐶𝑂2
)4𝛼= 𝑘'+𝑝 5𝛼

𝐶𝑂2 (S6)

To determine the reaction order, the reaction rate is rewritten as a function of the space velocity 

(SV) and the conversion of CO2 molecules (XCO2) (equation (S7)).

𝑟(𝑡) = 𝑆𝑉 ⋅ (1 ‒ 𝑋𝐶𝑂2
) = 𝑘"+𝑝 𝛼

𝐶𝑂2 (S7)

The natural logarithm of equation (S7) allows to derive the reaction order , as shown in equation 𝛼

(S8).

ln (1 ‒ 𝑋𝐶𝑂2
) + ln 𝑆𝑉= 𝛼 ⋅ ln 𝑝𝐶𝑂2

+ ln 𝑘"+ (S8)

To obtain the Arrhenius parameters, equation (S6) is rearranged to equation (S9) and integrated 

from the inlet partial pressure  to the outlet partial pressure  and from 0 to the residence 
𝑝𝐶𝑂2,𝑖

𝑝𝐶𝑂2,𝑜

time .𝑡0

𝑝𝐶𝑂2,𝑜

∫
𝑝𝐶𝑂2,𝑖

𝑑𝑝𝐶𝑂2

𝑝 5𝛼
𝐶𝑂2

=

𝑡0

∫
0

𝑘'+𝑑𝑡 (S9)

The expression for the modified forward rate constant  is then obtained in equation (S10).𝑘 '
+

(1 ‒ 𝑋𝐶𝑂2
)1 ‒ 5𝛼

1 ‒ 5𝛼
=‒ 𝑘 '

+ 𝑡0 + 𝐶 (S10)
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A first requirement is the experimental determination of the reaction order  which was given in 𝛼

equation (S8). This parameter cannot be estimated since the H2/CO2 ratio is kept constant in the 

design space. The reaction order for CO2 is determined from the slope of the linear fits in Figure 

S6.4. a and found to be 0.08 for the 19Ni-4Co/Al2O3 and 0.06 for the 21Ni-3Co/Al2O3. In the 

modeling approach used here, which assumes a fractional rate law, the next step consists of 

deriving the Arrhenius parameters. This is done by varying the residence time at different 

temperatures. The rate coefficient is in this rate-law model determined by plotting the integrated 

rate law versus the residence time. The y-axis values are predicted using the model trained on the 

CO2 conversion, . To ensure the interpolative regime and ascertain accuracy, one measurement 
𝑋𝐶𝑂2

is added to the training set at each different GHSV. It is seen in Figure S6.4. b that high accuracy 

(R²>0.98) is achieved and the agreement between model and experimental data is in all cases 

within the 5% error bars. Nevertheless, to determine the Arrhenius parameters, a linear trend has 

to be obtained and despite the low absolute error, the model is too noisy extract these Arrhenius 

parameters. Experimentally, the activation energies are obtained with a highly linear trend, as 

shown in Figure S6.4. c. It was found that the 19Ni-4Co/Al2O3 sample has an activation energy of 

approximately 89 kJ/mol, while the 21Ni-3Co/Al2O3 sample has a lower activation energy of 73 

Figure S6.4. Experiments to derive the kinetic parameters of 19Ni-4Co/Al2O3 catalyst, calcinated 

at 723 K, reduced at 873 K (orange) and 21Ni-3Co/Al2O3 catalyst, calcinated at 673 K, reduced at 

823 K (blue). (a) Linear regression to determine the reaction order. (b) Parity plot for the 

prediction of the integrated rate law values with Gaussian processes. (c) Linear regression of 

experimental rate constants with respect to temperature to determine the activation energy. 
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kJ/mol. These values are in the order of magnitude of the activation energies that are found for 

similar catalytic systems, ranging between 70 and 100 kJ/mol [6], [7], [8], [9].

S8. Light-Off Curve

Figure S7.1. Prior light-off curve prediction without knowledge about the catalytic system for a 

21Ni-3Co/Al2O3 catalyst, calcinated at 673 K, reduced at 873 K.

Figure S7.2. Predicted light-off curve after performing one experiment with the 21Ni-3Co/Al2O3 

catalyst, calcinated at 673 K, reduced at 873 K.
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Figure S7.3. Posterior light-off curve prediction for the 21Ni-3Co/Al2O3 catalyst, calcinated at 673 

K, reduced at 873 K after performing activity tests.
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