Supplementary Information

Selective Catalytic NO_x Reduction by H₂ in Excess O₂ over Pt/Zirconium Phosphate Nanosheet.

Keisuke Awaya,^{*a} Yuka Sato,^b Aoi Miyazaki,^b Mana Furukubo,^b Koshi Nishiyama,^b Masayuki Tsushida,^c Shintaro Ida,^d Junya Ohyama,^{a,d} Masato Machida^{*a,d}

a) Faculty of Advanced Science and Technology, Kumamoto University; 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

b) Graduate School of Science and Technology, Kumamoto University; 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

c) Technical Division, Kumamoto University; 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

d) Institute of Industrial Nanomaterials (IINa), Kumamoto University; 2-39-1, Kurokami, Chuoku, Kumamoto, 860-8555, Japan.

Figure S1. In-plane XRD patterns ($2\theta\chi/\phi$ scan) of the ZrP nanosheet spin-coating film deposited on a Si wafer before and after annealing at 100-800 $^{\circ}$ C for 1 h.

Figure S2. Powder XRD patterns (20/0 scan) of the α -ZrP (α -Zr(HPO₄)₂·H₂O) before and after annealing at 200-500 °C for 1 h, ICSD #1281 (α -Zr(HPO₄)₂·H₂O), and ICSD #280395 (ZrP₂O₇).

Figure S3. Out-of-plane XRD patterns (20/ θ scan) of the ZrP nanosheet spin-coating film deposited on a Si wafer before and after annealing at 100-800 $^{\circ}$ C for 1 h.

Figure S4. Thickness and lateral size distributions of the ZrP nanosheet deposited on a Si wafer (analysis of AFM images).

Figure S5. FE-SEM images of the (a) α -ZrP (α -Zr(HPO₄)₂·H₂O) and (b) restacked ZrP nanosheet.

Figure S6. FE-SEM images of (a) 0.08, (b) 0.14, (c) 0.22, and (d) 0.49 wt% Pt (ads.)/ZrP nanosheet.

Figure S7. FE-SEM images of the (a) 0.5 wt% Pt (ads.)/ α -Zr(HPO₄)₂·H₂O and (b) 0.4 wt% Pt (ads.)/ZrP₂O₇.

Figure S8. FE-SEM image of the freeze-dried ZrP nanosheet.

Figure S9. Powder XRD patterns ($2\theta/\theta$ scan) of the (a) hexylamine (HA)- and the (b) decylamine (DA)-restacked ZrP nanosheet.

Figure S10. A HAADF-STEM image of the Pt (particle size ~ 14 nm) particle on ZrP nanosheet (0.49 wt% Pt (ads.)/ZrP nanosheet).

Figure S11. HAADF-STEM images of the (a-b) 0.14 wt% Pt (ads.)/ZrP nanosheet and (c) 0.16 wt% Pt (imp.)/ZrP nanosheet.

Figure S12. HAADF-STEM images showing Pt clusters and atomically-dispersed Pt on (a) 0.49 wt% Pt (ads.)/ZrP nanosheet and (b) 0.14 wt% Pt (ads.)/ZrP nanosheet.

Figure S13. (a-d) HAADF-STEM images of 0.4 wt% Pt (ads.)/ZrP₂O₇. The images (b), (c), and (d) are zoomed images of the area marked by X, Y, and Z in (a).

Figure S14. (a-d) HAADF-STEM images of 0.5 wt% Pt (ads.)/ α -Zr(HPO₄)₂·H₂O. The images (b), (c), and (d) are zoomed images of the area marked by X, Y, and Z in (a).

Figure S15. (a) Maximal NO conversion for H₂-SCR over 0.08 (200 °C), 0.14 (175 °C), 0.22 (175 °C), and 0.49 wt% (150 °C) Pt (ads.)/ZrP nanosheet. (b) N₂ selectivity over 0.08-0.49 wt% Pt (ads.)/ZrP nanosheet at the same temperatures for (a).

Figure S16. Temperature dependence of NO conversion and product yields over 0.16 wt% Pt (imp.)/ZrP nanosheet. NO (200 ppm), H2 (5,000 ppm), O2 (10%), and He balance.

Figure S17. Powder XRD patterns ($2\theta/\theta$ scan) of the 0.51 wt% Pt (ads.)/ZrP nanosheet before and after examining 3 cycles of H₂-SCR performance test.

Figure S18. Continuous H₂-SCR performance test over 0.51 wt% Pt (ads.)/ZrP nanosheet at 150 °C in NO (200 ppm), H₂ (5,000 ppm), O₂ (10%), and He balance ($W_{catalyst}$ = 44.9 mg).

Figure S19. Temperature dependence of NO conversion and product yields over 0.4 wt% Pt/SiO₂. NO (200 ppm), H2 (5,000 ppm), O2 (10%), and He balance.

Figure S20. Pt 4f XPS spectra of 0.5 wt% Pt (ads.)/ α -Zr(HPO₄)₂·H₂O and 0.4 wt% Pt (ads.)/ZrP₂O₇. The intensity was normalized using the maximal intensity of Zr3d spectra.

Samples	S _{BET} / m²/g
α-ZrP (as prepared)	13.2
Restacked ZrP nanosheet (0.1 M HCI)	26.1
Freeze-dried ZrP nanosheet	12.4
HA-intercalated ZrP nanosheet (400 $^\circ\!\mathrm{C}$ /1 h/air)	40.0
DA-intercalated ZrP nanosheet (400 $^\circ\!\mathrm{C}$ /1 h/air)	25.3

Table S1. BET specific surface area (S_{BET}) of the α -ZrP (α -Zr(HPO₄)₂ · H₂O) and its derivatives.

Table S2. Comparison of the maximal NO_x conversion (conv.), N₂ selectivity, N₂O yield (100 °C), and NO₂ yield (300 °C) over the Pt-based H₂-SCR catalyst reported in previous literatures.

Samala	Feed gas composition;	Maximal	N ₂	N ₂ O yield	NO ₂ yield	Def	
Sample	Space velocity	NO _x conv.	selectivity	at 100 °C	± 100 ℃ at 300 ℃		
110/ D1/T: NACNA 44	NO/H ₂ /O ₂ = 0.1%/0.5%/6.7%, He balance;	88%	79%	1	1041		
1Wt% Pt/11-MCM-41	80,000 h ⁻¹	140 °C	140 °C	n/a	n/a	[S1]	
0.0440/ DUALMON 44	NO/H ₂ /O ₂ = 0.1%/0.5%/6.7%, He balance;	80%	85%				
0.94wt% Pt/AI-MCM-41	80,000 h ⁻¹	120 °C	120 °C	n/a	n/a	[52]	
4+0/ D1/70M 05	NO/H ₂ /O ₂ = 0.1%/0.5%/6.7%, He balance;	81%	69%	- 1-		1001	
TWt% Pt/2SIM-35	80,000 h ⁻¹	120 °C	120 °C	n/a	n/a	[83]	
	NO/NO ₂ /H ₂ /O ₂ = 0.091%/0.009%/0.5%/10%,	87%	69%		E 40/	10.41	
0.5wt% Pt/H-FER	He balance; 36,000 h ⁻¹	110 °C	110 °C	n/a	54%	[S4]	
	NO/H ₂ /O ₂ = 0.1%/0.5%/10%, He balance; 81% 75%	n la	1051				
0.5Wt% Pt/Ht	32,000 h ⁻¹	130 °C	130 °C	n/a	n/a	[85]	
1t0/ Dt/CCZ 12	NO/H ₂ /H ₂ O/O ₂ = 0.1%/0.5%/5%/10%,	98%	23%	000/	600/	10.61	
IWI% PI/552-13	He balance; 20,000 h ⁻¹	100 °C	100 °C	00%	00%	[30]	
1 5wt9/ Dt/70M 5	NO/H ₂ /H ₂ O/O ₂ = 0.05%/0.5%/5%,	99%	79%	nla	220/	1071	
1.5WL% PVZ 5WI-5	He balance; 120,000 ml/h • g _{cat}	75 °C	75 °C	n/a	22%	[97]	
21.49/ Dt/Ma	NO/H ₂ /O ₂ = 0.048%/0.8%/5%, He balance;	63%	30%	240/		10.01	
2wt% Pt/MnO _x	78,000 h ⁻¹	100 °C	100 °C	34 %	n/a	[58]	
1wt% Pt/Ti _{0.5} Zr _{0.5}	NO/H ₂ /O ₂ = 0.03%/0.24%/5%, N ₂ balance;	97%	60%	2/2	13%	3% 50 °C) [S9]	
(TiO ₂ +ZrO ₂ +ZrTiO ₄)	36,000 h ⁻¹	130 °C	130 °C	n/a	(250 °C)		
0.49wt% Pt (ads.)/ZrP	NO/H ₂ /O ₂ = 0.02%/0.5%/10%, He balance;	89%	83%	160/	00/	This	
nanosheet	120,000 ml/h•g _{cat} ,~50,000 h ⁻¹	150 °C	150 °C	10%	9%	work	

Pt loading amount of	Mathad	D+0 / 0/		Pt ^{iv} -O / %	
Pt/ZrP nanosheet / wt%	Method	Ρι°/ %	Pl"-0 / %		
0.08	Ads.	33.4	47.8	18.8	
0.14	Ads.	31.4	48.9	19.7	
0.22	Ads.	29.3	56.5	14.2	
0.49	Ads.	29.2	58.3	12.5	
0.16	Imp.	30.4	56.2	13.4	

Table S3. Percentages of Pt species of 0.08-0.49 wt% Pt (ads.)/ZrP nanosheet and 0.16 wt% Pt (imp.)/ZrP nanosheet (XPS analysis).

Table S4. Percentages of Pt species of 0.4 wt% Pt (ads.)/ ZrP_2O_7 and 0.5 wt% Pt (ads.)/ α -Zr(HPO₄)₂·H₂O (XPS analysis).

Samples	Method	Pt ⁰ / %	Pt ^{II} -O / %	Pt ^{IV} -O / %
0.4 wt% Pt/ZrP ₂ O ₇	Ads.	54.1	32.7	13.2
0.5 wt% Pt/α-Zr(HPO₄)₂·H₂O	Ads.	34.4	49.0	16.6

References

[S1] L. Li, P. Wu, Q. Yu, G. Wu, N. Guan, Appl. Catal. B, 2010, 94, 254-262.

[S2] P. Wu, L. Li, Q. Yu, G. Wu, N. Guan, Catal. Today, 2010, 158, 228-234.

- [S3] Q. Yu, M. Richter, F. Kong, L. Li, G. Wu, N. Guan, Catal. Today, 2010, 158, 452-458.
- [S4] S. Yang, X. Wang, W. Chu, Z. Song, S. Zhao, Appl. Catal. B, 2011, 107, 380-385.
- [S5] X. Zhang, X. Wang, X. Zhao, Y. Xu, H. Gao, F. Zhang, Chem. Eng. J., 2014, 252, 288-297.

[S6] J. Shao, P. H. Ho, D. Creaser, L. Olsson, Appl. Catal. O, 2024, 188, 206947.

[S7] D. C. Park, S. Moon, J. H. Song, H. Kim, E. Lee, Y. H. Lim, D. H. Kim, *Catal. Today*, 2024, *425*, 114318.

[S8] S. M. Park, M. -Y. Kim, E. S. Kim, H. -S. Han, G. Seo, Appl. Catal. A, 2011, 395, 120-128.

[S9] Y. Li, D. He, H. Zhao, M. Pei, Y. Fan, H. Xu, J. Wang, Y. Chen, *Chem. Eng. J.*, 2024, 490, 151714.