Supplementary Information

Selective Catalytic NO_x Reduction by H₂ in Excess O₂ over Pt/Zirconium Phosphate Nanosheet.

Keisuke Awaya,*^a Yuka Sato,^b Aoi Miyazaki,^b Mana Furukubo,^b Koshi Nishiyama,^b Masayuki Tsushida,^c Shintaro Ida,^d Junya Ohyama,^{a,d} Masato Machida*a,d

a) Faculty of Advanced Science and Technology, Kumamoto University; 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

b) Graduate School of Science and Technology, Kumamoto University; 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.

c) Technical Division, Kumamoto University; 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860- 8555, Japan.

d) Institute of Industrial Nanomaterials (IINa), Kumamoto University; 2-39-1, Kurokami, Chuoku, Kumamoto, 860-8555, Japan.

Figure S1. In-plane XRD patterns (2θχ/φ scan) of the ZrP nanosheet spin-coating film deposited on a Si wafer before and after annealing at 100-800 ℃ for 1 h.

Figure S2. Powder XRD patterns (2θ/θ scan) of the α-ZrP (α-Zr(HPO₄)₂·H₂O) before and after annealing at 200-500 °C for 1 h, ICSD #1281 (α-Zr(HPO₄₎₂·H₂O), and ICSD #280395 $(ZrP₂O₇)$.

Figure S3. Out-of-plane XRD patterns (2θ/θ scan) of the ZrP nanosheet spin-coating film deposited on a Si wafer before and after annealing at 100-800 ℃ for 1 h.

Figure S4. Thickness and lateral size distributions of the ZrP nanosheet deposited on a Si wafer (analysis of AFM images).

Figure S5. FE-SEM images of the (a) α -ZrP (α -Zr(HPO₄)₂·H₂O) and (b) restacked ZrP nanosheet.

Figure S6. FE-SEM images of (a) 0.08, (b) 0.14, (c) 0.22, and (d) 0.49 wt% Pt (ads.)/ZrP nanosheet.

Figure S7. FE-SEM images of the (a) 0.5 wt% Pt (ads.)/ α -Zr(HPO₄)₂·H₂O and (b) 0.4 wt% Pt (ads.)/ ZrP_2O_7 .

Figure S8. FE-SEM image of the freeze-dried ZrP nanosheet.

Figure S9. Powder XRD patterns (2θ/θ scan) of the (a) hexylamine (HA)- and the (b) decylamine (DA)-restacked ZrP nanosheet.

Figure S10. A HAADF-STEM image of the Pt (particle size \sim 14 nm) particle on ZrP nanosheet (0.49 wt% Pt (ads.)/ZrP nanosheet).

Figure S11. HAADF-STEM images of the (a-b) 0.14 wt% Pt (ads.)/ZrP nanosheet and (c) 0.16 wt% Pt (imp.)/ZrP nanosheet.

Figure S12. HAADF-STEM images showing Pt clusters and atomically-dispersed Pt on (a) 0.49 wt% Pt (ads.)/ZrP nanosheet and (b) 0.14 wt% Pt (ads.)/ZrP nanosheet.

Figure S13. (a-d) HAADF-STEM images of 0.4 wt% Pt (ads.)/ZrP₂O₇. The images (b), (c), and (d) are zoomed images of the area marked by X, Y, and Z in (a).

Figure S14. (a-d) HAADF-STEM images of 0.5 wt% Pt (ads.)/α-Zr(HPO₄)₂·H₂O. The images (b), (c), and (d) are zoomed images of the area marked by X, Y, and Z in (a).

Figure S15. (a) Maximal NO conversion for H₂-SCR over 0.08 (200 °C), 0.14 (175 °C), 0.22 (175 °C), and 0.49 wt% (150 °C) Pt (ads.)/ZrP nanosheet. (b) N_2 selectivity over 0.08-0.49 wt% Pt (ads.)/ZrP nanosheet at the same temperatures for (a).

Figure S16. Temperature dependence of NO conversion and product yields over 0.16 wt% Pt (imp.)/ZrP nanosheet. NO (200 ppm), H2 (5,000 ppm), O2 (10%), and He balance.

Figure S17. Powder XRD patterns (2θ/θ scan) of the 0.51 wt% Pt (ads.)/ZrP nanosheet before and after examining 3 cycles of H₂-SCR performance test.

Figure S18. Continuous H_2 -SCR performance test over 0.51 wt% Pt (ads.)/ZrP nanosheet at 150 °C in NO (200 ppm), H₂ (5,000 ppm), O₂ (10%), and He balance ($W_{\text{catalyst}} = 44.9 \text{ mg}$).

Figure S19. Temperature dependence of NO conversion and product yields over 0.4 wt% Pt/SiO2. NO (200 ppm), H2 (5,000 ppm), O2 (10%), and He balance.

Figure S20. Pt 4f XPS spectra of 0.5 wt% Pt (ads.)/α-Zr(HPO4)2·H2O and 0.4 wt% Pt (ads.)/ ZrP_2O_7 . The intensity was normalized using the maximal intensity of Zr3d spectra.

Samples	$S_{\text{BET}}/m^2/g$		
α -ZrP (as prepared)	13.2		
Restacked ZrP nanosheet (0.1 M HCI)	26.1		
Freeze-dried ZrP nanosheet	124		
HA-intercalated ZrP nanosheet (400 °C/1 h/air)	40.0		
DA-intercalated ZrP nanosheet (400 °C/1 h/air)	25.3		

Table S1. BET specific surface area (S_{BET}) of the α-ZrP (α-Zr(HPO₄)₂ · H₂O) and its derivatives.

Table S2. Comparison of the maximal NO_x conversion (conv.), N_2 selectivity, N_2O yield (100 °C), and NO₂ yield (300 °C) over the Pt-based H₂-SCR catalyst reported in previous literatures.

Pt loading amount of		Pt^{0} / %	$Pt^{II} - O / \%$	Pt^{IV} -O / %
Pt/ZrP nanosheet / wt%	Method			
0.08	Ads.	33.4	47.8	18.8
0.14	Ads.	31.4	48.9	19.7
0.22	Ads.	29.3	56.5	14.2
0.49	Ads.	29.2	58.3	12.5
0.16	Imp.	30.4	56.2	13.4

Table S3. Percentages of Pt species of 0.08-0.49 wt% Pt (ads.)/ZrP nanosheet and 0.16 wt% Pt (imp.)/ZrP nanosheet (XPS analysis).

Table S4. Percentages of Pt species of 0.4 wt% Pt (ads.)/ZrP₂O₇ and 0.5 wt% Pt (ads.)/ α - $Zr(HPO₄)₂·H₂O$ (XPS analysis).

Samples	Method	$Pf^0 / %$	$Pt^{\text{II}} - O / \%$	Pt^{IV} -O / %
0.4 wt% Pt/ZrP ₂ O ₇	Ads.	54.1	32.7	13.2
0.5 wt% Pt/a-Zr(HPO ₄) ₂ ·H ₂ O	Ads.	34.4	49.0	16.6

References

[S1] L. Li, P. Wu, Q. Yu, G. Wu, N. Guan, Appl. Catal. B, 2010, 94, 254-262.

[S2] P. Wu, L. Li, Q. Yu, G. Wu, N. Guan, Catal. Today, 2010, 158, 228-234.

- [S3] Q. Yu, M. Richter, F. Kong, L. Li, G. Wu, N. Guan, Catal. Today, 2010, 158, 452-458.
- [S4] S. Yang, X. Wang, W. Chu, Z. Song, S. Zhao, Appl. Catal. B, 2011, 107, 380-385.
- [S5] X. Zhang, X. Wang, X. Zhao, Y. Xu, H. Gao, F. Zhang, Chem. Eng. J., 2014, 252, 288-297.

[S6] J. Shao, P. H. Ho, D. Creaser, L. Olsson, Appl. Catal. O, 2024, 188, 206947.

- [S7] D. C. Park, S. Moon, J. H. Song, H. Kim, E. Lee, Y. H. Lim, D. H. Kim, Catal. Today, 2024, 425, 114318.
- [S8] S. M. Park, M. -Y. Kim, E. S. Kim, H. -S. Han, G. Seo, Appl. Catal. A, 2011, 395, 120-128.
- [S9] Y. Li, D. He, H. Zhao, M. Pei, Y. Fan, H. Xu, J. Wang, Y. Chen, Chem. Eng. J., 2024, 490, 151714.