## **Supplementary Information**

## Enhancement mechanism of a novel heterojunction Zscheme-type composite BiOBr/ZnIn<sub>2</sub>S<sub>4</sub> to degrade Congo

Red

Junchao Huang<sup>1a</sup>, Borui Li<sup>1a</sup>, Jiaxing Yu<sup>1</sup>, Zhan Shu<sup>1</sup>, Ming Li\*

<sup>1</sup>College of Forestry, Northeast Forestry University, Harbin 150040, China

<sup>a</sup>These authors contributed equally to this work.

\*Corresponding author: Prof. Ming Li

College of Forestry, Northeast Forestry University, Harbin 150040, China **Tel:** 86-451-82192120

E-mail: liming1986@nefu.edu.cn (M. Li)



In Lα1

Bi Mα1



5µm

5μm



Zn Lα1,2





5μm



Fig. S1. Energy-dispersive X-Ray spectrometry mapping of BiOBr/ZIS-7



Fig. S2. FT-IR spectrum of synthesized BiOBr,  $ZnIn_2S_4$ , and BiOBr/ZIS-7 samples for the region of 400-4000 cm<sup>-1</sup>.



Fig. S3.  $N_2$  adsorption-desorption curves (a) and pore size distributions (b) of the as-prepared samples.



**Fig. S4.** UV–Vis diffuse reflectance spectra of samples (a); Plots of  $(\alpha hv)^2$  versus hv obtained from BiOBr and ZnIn<sub>2</sub>S<sub>4</sub> (b).



**Fig. S5.** Cycling experiments of Congo red degradation by BiOBr/ZIS-7 under visible light irradiation (a); XRD of reused composites (BiOBr/ZIS-7-Recycle) and original composites (BiOBr/ZIS-7) (b).



Fig. S6. Mineralization rates of Congo red decomposed by catalysts under visible light.