Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Construction of a Highly Efficient MoS₂-Based Composite Electrocatalyst for the

Oxygen Evolution Reaction

Mengyan Huang^a, Bo Liu^d, Junwei Wu^a, Junfeng Gu^b, Yichen Zheng, Peiyan Ma^{a, *}, Bei Li^{d,*},

and Zhengyi Fub,c,*

Fig. S1 XRD patterns of commercial MoS₂, BM-MoS₂ and CC-MoC@MoS₂-2.0.

Fig. S2 XRD patterns of BM-MoS₂ and CC-MoC@MoS₂-2.0.

Fig. S3 SEM images of (a, b) commercial MoS₂, (c, d) BM-MoS₂, and (e, f) CC-MoC@MoS₂-2.0.

Fig. S4 FTIR spectra of BM-MoS₂ and CC-MoC@MoS₂-2.0.

Fig. S5 Raman spectra of commercial MoS₂, BM-MoS₂ and CC-MoC@MoS₂-2.0.

Fig. S6 XPS survey scan of CC-MoC@MoS₂-2.0 after treatment in 1.0 M HCl. The S/Mo ratio is 1.7.

1.0 M HCl.					
	Мо	S	С	0	S/Mo
Ball-milled MoS ₂	24.94%	50.28%	1.60%	23.18%	2.0
CC-MoC@MoS ₂ -2.0	28.51%	40.24%	10.71%	20.54%	1.4
CC-MoC@MoS ₂ -2.0 after HCl	26.98%	45.87%	11.37%	15.78%	1.7
treatment					

Table S1: Elemental composition (mole %) of BM-MoS2 and CC-MoC@MoS2-2.0 before and after treatment in

Fig. S7 LSV curves of MoC supported on nickel foam for OER.

Fig. S8 LSV curves of CC-MoC@MoS₂-2.0 before and after acid treatment (1.0 M HCl).

Fig. S9 OER polarization curves of BM-MoS₂, CC-MoC@MoS₂-0.5, CC-MoC@MoS₂-1.0, CC-MoC@MoS₂-1.5, CC-MoC@MoS₂-2.0, CC-MoC@MoS₂-2.5 and CC-MoC@MoS₂-3.0.

 Table S2: Comparison of the OER performance of CC-MoC@MoS2-2.0 with that of reported electrocatalysts (in 1M KOH).

Catalysts	η_{10} (mV)	Tafel slope (mV dec ⁻¹)	$C_{\rm dl}$ (mF cm ⁻²)	$R_{\rm ct}$ (Ω)	Refs
CC-MoC@MoS ₂ -2.0	248	47.09	4.02	0.716	This work
Fe ₃ O ₄ /CoO CNTs	270	59	30.07	17.5	[1]
$Fe_5Co_4Ni_{20}Se_{36}B_x$	279.8	59.5	3.25	1.586	[2]
p Ni _{0.7} Co _{0.3} Se ₂ Ns	258	42.3	0.04	32.8	[3]
$Fe-NiO_x NT$	310	49	22.73	14.4	[4]
Ni ₂ P NPs	290	47	0.176	1.8	[5]
Co-Ni-Fe ₅₁₁ Ns	288	43	0.475	/	[6]
MnO ₂ -CoP ₃	288	65	0.091	/	[7]
Fe ₃ C@NCNTs-NCNFs	284	56	28.2	/	[8]
Fe ₃ O ₄ -Co ₃ S ₄ NS	260	56	63.2	/	[9]

NiFeMn LDH	262	47	2.466	/	[10]
Co, Nb-MoS ₂ /TiO ₂	260.1	65	23.7	0.77	[11]
CoP/CN@MoS2	289	69	94.7	17	[12]
CoO _x -MoC/NC	330	89.8	257	/	[13]
Co ₉ S ₈ -CuS-FeS	300	79	1.51	26	[14]
Ag@CoOOH	256	64.6	/	2.9	[15]
Carboxyl coordinated Ni/Co	258	76.5	/	/	[16]
Co ₆ Mo ₆ C ₂ -NC-rGO	260	50	42	9	[17]

 $\textbf{Fig. S10} \ Tafel \ slopes \ of \ BM-MoS_2, \ CC-MoC@MoS_2-0.5, \ CC-MoC@MoS_2-1.0, \ CC-MoC@MoS_2-1.5, \ CC-MoC@MoS_2-1.5$

 $MoC@MoS_2\mbox{-}2.0, CC\mbox{-}MoC@MoS_2\mbox{-}2.5 \mbox{ and } CC\mbox{-}MoC@MoS_2\mbox{-}3.0.$

 $Fig. \ S11 \ C_{dl} \ of \ BM-MoS_2, \ CC-MoC@MoS_2-0.5, \ CC-MoC@MoS_2-1.0, \ CC-MoC@MoS_2-1.5, \ CC-Mo$

2.0, CC-MoC@MoS₂-2.5 and CC-MoC@MoS₂-3.0.

 $Fig.~S12 \ The \ Nyquist \ plots \ of \ BM-MoS_2, \ CC-MoC@MoS_2-0.5, \ CC-MoC@MoS_2-1.0, \ CC-MoC@MoS_2-1.5, \ CC-MoC@MoS_2$

 $MoC@MoS_2-2.0, CC-MoC@MoS_2-2.5 \ and \ CC-MoC@MoS_2-3.0.$

Fig. S13 LSV curve of CC-MoC@MoS₂-2.0 after a continuous CV of 5000 cycles.

Catalysts	η_{10} (mV)	Tafel slope (mV dec ⁻¹)	C_{dl} (mF cm ⁻²)	$R_{\rm ct}$ (Ω)
Ball-milled MoS ₂	285	112.12	2.98	2.553
CC-MoC@MoS ₂ -0.5	268	110.08	3.06	2.309
CC-MoC@MoS ₂ -1.0	262	91.22	3.25	1.586
CC-MoC@MoS ₂ -1.5	260	86.31	3.25	1.176
CC-MoC@MoS ₂ -2.0	248	47.09	4.02	0.716
CC-MoC@MoS ₂ -2.5	275	60.48	3.74	0.898
CC-MoC@MoS ₂ -3.0	257	79.56	3.08	1.131

Table S3: The η_{10} , Tafel slope, C_{dl} and R_{ct} values for OER of BM-MoS₂ and CC-MoC@MoS₂-X catalysts.

Fig. S14 SEM images of CC-MoC@MoS₂-2.0 (a, b) before and (c, d) after stability test.

Fig. S15 (a, b) TEM images and (c) SAED pattern of CC-MoC@MoS₂-2.0 after stability test. (d) XRD patterns and XPS spectra of (e) Mo 3d, (f) S 2p, (g) C 1s of CC-MoC@MoS₂-2.0 before and after stability test.

Fig. S16 High-resolution XPS spectra of O 1s of CC-MoC@MoS₂-2.0 before and after stability test.

Fig. S17 Raman spectra of CC-MoC@MoS₂-2.0 before and after stability test.

Fig. S18 Water adsorption models of (a) MoS₂, (b) MoC@MoS₂-I, (c) MoC@MoS₂-II and (d) CC-MoC@MoS₂-

2.0.

Fig. S19 Theoretical structural models of clean surfaces and *OH, *O, *OOH intermediates adsorbed on the surfaces of a) MoS₂, b) MoC@MoS₂-I, c) MoC@MoS₂-II and d) CC-MoC@MoS₂.

Table S4: The calculated $E^*(eV)$, Gibbs free energy change $\triangle_r G(eV)$ and theoretical overpotential $\eta(eV)$ values of the OER performance (calibration at 298.15 K, the unit of physical quantity is eV, U = 0 V).

System	E*	$G_{ m H2O}$	$G_{ m H2}$	G_{O2}	$\Delta_{\rm r}G_1$	$\Delta_{\rm r}G_2$	$\Delta_{\rm r}G_3$	$\Delta_{\rm r}G_4$	η
MoS_2	-364.73				1.40	-	-	-	-
MoC@MoS ₂ -I	-661.31				1.11	-	-	-	-
MoC@MoS2-II	-696.01	-14.22	-6.80	-9.92	-0.47	-0.26	1.03	-0.30	1.03
CC-MoC@MoS ₂ - 2.0	-809.10				-0.11	-0.53	0.94	-0.30	0.94

System	Reaction	$E_{\text{transition}} \left(eV \right)$	
MoC@MoS ₂ -II		0.47	
CC-MoC@MoS ₂	Proton generation	0.42	
MoC@MoS ₂ -II		0.84	
CC-MoC@MoS ₂	Proton transfer	0.72	

Table S5: The energies of proton generation and migration of different electrocatalysts calculated by CI-NEB method.

Fig. S20 Schematic illustration of the proposed proton transfer processes of MoC@MoS₂-II and CC-MoC@MoS₂-2.0. The initial and final proton generation states of MoC@MoS₂-II (a, b) and CC-MoC@MoS₂-2.0 (c, d). The initial and final states of proton migration of MoC@MoS₂-II (e, f) and CC-MoC@MoS₂-2.0 (g, h).

Fig. S21 LSV curves of BM-MoS₂ and CC-MoC@MoS₂-2.0 with and without CaCl₂ in the electrolyte.

Fig. S22 LSV curves of (a) CC-MoC@MoS₂-2.0 and (b) BM-MoS₂ catalysts in 1 M KOH with the titration of 5

mM TPP-COOH or Benzene-COOH.

Fig. S23 LSV curves of BM-MoS₂ catalysts in 1 M KOH with NaAc solutions of different concentrations.

References

- Y.Luo, H.Yang, P.Ma, S.Luo, Z.Zhao, J.Ma, Fe₃O₄/CoO interfacial nanostructure supported on carbon nanotubes as a highly efficient electrocatalyst for oxygen evolution reaction, ACS Sustainable Chem. Eng. 8 (2020)3336-3346.
- [2] Y.Zuo, D.Rao, S.Ma, T.Li, Y. H.Tsang, S.Kment, Y.Chai, Valence engineering via dual-cation and boron doping in pyrite selenide for highly efficient oxygen evolution, ACS Nano 13(2019)11469-11476.
- [3] X. Wang, Y.Zheng, J.Yuan, J.Shen, J.Hu, A.j.Wang, L.Wu, L.Niu, Porous NiCo diselenide nanosheets arrayed on carbon cloth as promising advanced catalysts used in water splitting, Electrochim. Acta 225(2017) 503-513.
- [4] G.Wu, W.X.Chen,X.S. Zheng,D.P. He,Y.Q. Luo, X.Q.Wang, J.Yang, Y.E.Wu, W.S.Yan, Z.B.Zhuang, X.Hong,Y.D. Li, Hierarchical Fe-doped NiO_X nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction, Nano Energy 38(2017)167-174.
- [5] L.A.Stern, L.Feng, F.Song, X.Hu, Ni₂P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni₂P nanoparticles, Energy Environ. Sci. 8(2015)2347-2351.
- [6] G. Zeng, M.Liao, C.Zhou, X.Chen, Y.Wang, D.Xiao, Iron and nickel co-doped cobalt hydroxide nanosheets with enhanced activity for oxygen evolution reaction,RSC Adv.6(2016)42255-42262.
- [7] X.Xiong, Y.Ji, M.Xie, C.You, L.Yang, Z.Liu, A. M. Asiri, X.Sun, MnO₂-CoP₃ nanowires array: an efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity, Electrochem. Commun. 86(2018)161-165.
- [8] Y.Zhao, J.Zhang, X.Guo, H.Fan, W.Wu, H.Liu, G.Wang, Fe₃C@Nitrogen doped CNT arrays

aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction, J. Mater. Chem. A 5(2017) 19672-19679.

- [9] J.Du, T.Zhang, J.Xing, C.Xu, Hierarchical porous Fe₃O₄/Co₃S₄ nanosheets as an efficient electrocatalyst for the oxygen evolution reaction, J. Mater. Chem. A 5(2017)9210-9216.
- [10] D. C.Nguyen, T. L.Luyen Doan, S.Prabhakaran, D. T.Tran, D. H.Kim, J. H.Lee, N. H.Kim, Hierarchical Co and Nb dual-doped MoS₂ nanosheets shelled micro-TiO₂ hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR, Nano Energy 82(2021)105750.
- [11]Z.Lu, L.Qian, Y.Tian, Y.Li, X.Sun, X.Duan, Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts, Chem.Comm. 52(2016)908-911.
- [12]J.G.Li, K.Xie, H.Sun, Z.Li, X.Ao, Z.Chen, K. K.Ostrikov, C.Wang, W.Zhang, Template-directed bifunctional dodecahedral CoP/CN@MoS₂ electrocatalyst for high efficient water splitting, ACS Appl. Mater. Interfaces 11(2019)36649-36657.
- [13]T.Huang, Y.Chen, J.M.Lee, A microribbon hybrid structure of CoO_x-MoC encapsulated in Ndoped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small 13(2017) 1702753.
- [14]S.Zhang, Y.Sun, F.Liao, Y.Shen, H.Shi, M.Shao, Co₉S₈-CuS-FeS trimetal sulfides for excellent oxygen evolution reaction electrocatalysis, Electrochim. Acta 283(2018)1695-1701.
- [15]. C.Lee, K.Shin, C.Jung, P.P.Choi, G.Henkelman, H. M.Lee, Atomically embedded Ag via electrodiffusion boosts oxygen evolution of CoOOH nanosheet arrays, ACS Catal. 10(2020) 562-569.
- [16] J.Chen, H.Zhang, B.Li, J.Yang, X.Li, T.Zhang, C.He, C.Duan, L.Wang, Bioinspired carboxylate– water coordination polymers with hydrogen-bond clusters and local coordination flexibility for electrochemical water splitting, ACS Appl. Energy Mater. 3(2020) 10515-10524.
- [17]Y.J.Tang, C.H. Liu, W.Huang, X.L Wang, L.Z.Dong, S.L.Li, Y.Q.Lan, Bimetallic carbidesbased nanocomposite as superior electrocatalyst for oxygen evolution reaction, ACS Appl. Mater. Interfaces 9(2017)16977-16985.