Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Materials

Study on the effect and mechanism of Ag and Bi₂MoO₆ modification on the CO₂ photo-thermal reduction performance of g-C₃N₄ catalysts with Localized Surface Plasmon Resonance

Bin Guan*, Junyan Chen, Zhongqi Zhuang, Zhan Gao, Zeren Ma, Xuehan Hu, Chenyu Zhu, Sikai

Zhao, Kaiyou Shu, Hongtao Dang, Tiankui Zhu, Zhen Huang Key Laboratory for Power Machinery and Engineering of Ministry of Education,

Shanghai Jiao Tong University, Shanghai 200240, China

*Corresponding author: Bin Guan

Dongchuan Road No.800, Min Hang District, Shanghai, P.R.China 200240

Tel.: +86 21 34206859; fax: +86 21 34205553.

E-mail: guanbin@sjtu.edu.cn

Figure S1 Preparation process of Ag/g-C₃N₄ by photo-deposition synthesis method

Figure S2 Preparation process of Ag&BMO/g-C₃N₄ by solvent thermal synthesis method

Figure S3 Schematic diagram of the photothermal coupling catalyst performance evaluation system test

Figure S4 Site conformation of (a) $g\text{-}C_3N_4$ and (b) $Ag/g\text{-}C_3N_4$

Figure S5 Density of States of g-C₃N₄ catalyst

Figure S6 Difference Charge Density of g-C₃N₄ catalyst before and after CO₂ absorption

Figure S7 CO $_2$ Reduction process of g-C $_3N_4$ catalyst

Figure S8 Density of States of Ag/g-C₃N₄ catalyst

Figure S9 Difference Charge Density of Ag/g-C $_3N_4$ catalyst before and after CO $_2$ absorption

Figure S10 CO₂ Reduction process of Ag/g-C₃N₄ catalyst