Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Appendix A. Supplementary Information

1. N₂ PHYSYSORPTION MEASUREMENTS OF CALCINED SAMPLES

FIG. A.1- Pore size distribution for calcined samples (NiO/Al₂O₃ (a), NiO/MgAl₂O₄-Al₂O₃ (b), NiO/CaZrO₃ (c) and NiO/LaFeO₃ (d)).

FIG. A.2- N₂-physisorption of NiO/Al₂O₃ (a), NiO/MgAl₂O₄-Al₂O₃ (b), NiO/CaZrO₃ (c) and NiO/LaFeO₃ (d) catalysts.

MEASUREMENTS OF THE REDUCED SAMPLES 2.

FIG. A.3- XRD pattern of post-reduction experiment on NiO/Al₂O₃ catalysts (a), NiO/MgAl₂O₄-Al₂O₃ (b). NiO/CaZrO₃ (c), NiO/LaFeO₃ (d) (H₂-TPR heating from room temperature to 900 °C) and of NiO/LaFeO₃ (d) (H₂-TPR heating from room temperature to 600 °C) (in black), and their respective pre-reduction catalysts (in red).

NiO/MgAl₂O₄-Al₂O Ni/MgAl₂O₄-Al₂O₃ Intensity (a.u.) •NiO •Ni †Al₂O₃ ▼MgAl₂O₄ ⊚NiAl₂O 30 50 70 40 80 20 (°)

b)

a)

-

Sample	Metal Dispersion (%)
Ni/Al ₂ O ₃	0.31%
Ni/MgAl ₂ O ₄ -Al ₂ O ₃	0.36%
Ni/CaZrO ₃	1.66%
Ni/LaFeO ₃	0.26%
TABLE A.1- Nickel Dispersion for all samples	

TABLE A.2 -H₂ quantity (cm³/g) employed in TPR measurements and evaluation of the experimental quantity of NiO reduced, as well as the theoretical quantity of NiO present in each sample and the calculated percentage of NiO reduced in each sample.

Sample Quantity H_2 (cm ³ /g) m_{NiO}/g $m_{NiO teorico}/g$ % _{NiO ridotto}	Sample	Quantity H ₂ (cm ³ /g)	m _{NiO} / g	m _{NiO teorico} /g	% _{NiO ridotto}
---	--------	--	----------------------	-----------------------------	--------------------------

NiO/Al2O3	39.08	0.13	0.16	79.83
NiO/MgAl2O4-Al2O3	45.41	0.15	0.17	91.39
NiO/CaZrO3	54.76	0.18	0.17	110.34
NiO/LaFeO3	55.72	0.19	0.17	109.33

The table shows that perovskites samples allowed the complete reduction of NiO, with an error due to the semiquantitative nature of the evaluation. For alumina-based samples, NiO reduced was evaluated as 20-30% less than perovskite-based samples. This might be due to the presence of the spinel NiAl₂O₄, which needs high temperatures to be reduced.

FIG. A.4- SEM-EDX maps of Ni/Al₂O₃ (a), Ni/MgAl₂O₄-Al₂O₃ (b), Ni/CaZrO₃ (c) and Ni/LaFeO₃ (d) catalysts after H₂-TPR.

⊐ 50 nm

FIG. A.5- Ni 2p photopeaks with the fitting obtained from the different contributions of Ni species following spin-orbital splitting rules for Ni/Al_2O_3 (a) and $Ni/MgAl_2O_4$ - Al_2O_3 (b) samples (after H_2 -TPR).

a)

b)

3. XPS STUDY

TABLE A.3- Binding energy position (BE) and Area of XPS peak fitting contributions.

	Fe ⁰ Fe2p3/2	Fe ⁰ Fe2p1/2	LaFeO₃ Fe2p3/2	LaFeO₃ Fe2p1/2
Ni/LaFeO₃				
BE (eV)	706.72	718.20	710.26	723.20
A (CPS.eV)	2664.03	1089.47	17591.36	7718.61

	NI:0	NI:0					NI:	NI:+
	Ni2p3/2	Ni2p1/2	$Ni(OH)_2$ Ni2p3/2	$Ni(OH)_2$ Ni2p1/2	NIAI $_2O_4$ Ni2p3/2	NIAI $_2O_4$ Ni2p1/2	NI sat. Ni2p3/2	Ni sat. Ni2p1/2
Ni/Al ₂ O ₃	F_7							p/
BE (eV)	851.84	869.22	853.64	871.77	855.94	874.05	860.14	878.55
A (CPS.eV)	3391.14	1575.97	7628.25	3545.08	7254.35	3371.31	10930.02	5079.42
Ni/MgAl ₂ O ₄ -Al ₂ O ₃								
BE (eV)	852.13	869.93	855.03	873.00	857.26	875.67	861.00	879.41
A (CPS.eV)	7846.74	3646.662	14936.24	69.4132	8559.51	3977.86	19694.20	9152.00
	AI_2O_3	AI_2O_3	$NiAl_2O_4$	$NiAl_2O_4$	$MgAl_2O_4$	$MgAl_2O_4$	Mg ⁰	$MgAl_2O_4$
	Al2p3/2	Al2p1/2	Al2p3/2	Al2p1/2	Al2p3/2	Al2p1/2	Mg1s	Mg1s
Ni/Al ₂ O ₃								
BE (eV)	73.57	74.18	74.67	75.44				
A (CPS.eV)	11808.111	5919.89	2358.50	1182.41				
Ni/MgAl ₂ O ₄ -Al ₂ O ₃								
BE (eV)	73.18	73.68	74.13	74.64	75.20	75.74	1302.93	1305.32
A (CPS.eV)			96.1121	4818.49	2046.38	1025.93	20144.23	8580.86
	C=C bond	C-C bond	C-O-C	0=C-0				
	C1s	C1s	bond C1s	bond C1s				
Ni/Al ₂ O ₃					-			
BE (eV)	284.45	284.73	285.23	289.37				
A (CPS.eV)	62122.64	25467.96	52836.89	13424.96				
Ni/MgAl ₂ O ₄ -Al ₂ O ₃					-			
BE (eV)	284.46	284.75	285.06	288.89				
A (CPS.eV)	64453.52	5215777.87	55251.15	13375.45				
Ni/CaZrO ₃					-			
BE (eV)		284.71	287.16	290.13				
A (CPS.eV)		12466.65	3398.47	547.53				
Ni/LaFeO₃					-			
BE (eV)	284.51	284.81	286.31	288.48				
A (CPS.eV)	57215.80	17367.25	20425.33	6113.34				

4. CATALYTIC TESTS

TABLE A.4- TOF_{CH4} and TOF_{CO2} of of Ni/Al₂O₃, Ni/MgAl₂O₃-Al₂O₃ Ni/CaZrO₃, Ni/LaFeO₃ for 5 % CH₄, 5 % CO₂, 1 % NO in Ar (^a) and 25 % CH₄, 25 % CO₂, 1 % NO in Ar (^b) gas mixtures, calculated at t=200 min (time at which conversions were stable over time).

	Dispersion (%)	SSA (m²/g)	TOF _{CH4} ^a (S ⁻¹)	TOF _{CH4} ^b (s ⁻¹)
Ni/Al ₂ O ₃	0.31	105	12	102
Ni/MgAl ₂ O ₄ -Al ₂ O ₃	0.36	62	6.5	81
Ni/CaZrO₃	1.66	3	0	0
Ni/LaFeO₃	0.26	6	23	62

	TOF _{CO2} ^a (s ⁻¹)	TOF _{CO2} ^b (s ⁻¹)	NO conversion rate ^{a*} (%)	NO conversion rate ^{b*} (%)
Ni/Al ₂ O ₃	14	102	100	100
Ni/MgAl ₂ O ₄ -Al ₂ O ₃	8.4	90	100	100
Ni/CaZrO ₃	1.4	0	100	100
Ni/LaFeO ₃	23	115	100	100

*complete NO conversion to N_2

FIG. A.6- Extended XPS spectra of post-reaction NiO/Al₂O₃, NiO/MgAl₂O₄-Al₂O₃, NiO/CaZrO₃ and NiO/LaFeO₃ catalysts.

FIG. A.7.- Raman spectra for NiO/Al₂O₃, NiO/MgAl₂O₄-Al₂O₃ and NiO/LaFeO₃ catalysts. Spectra were acquired with focus 50X in a range between 200 and 3500 cm⁻¹ except in NiO/LaFeO₃ spectra, where the acquisition range was reduced to 1000-2500 cm⁻¹ to obtain a comparable resolution with the other spectra and minimize LaFeO₃ fluorescence issues.

a)

b)

c)

