Supporting Information.

1D Zn(II)/2D Cu(I) halogen pyridyl coordination polymers. Band gap engineering by DFT for predicting more efficient photocatalysts in water treatment.

Andrea García-Hernán $^{\alpha}$, Fernando Aguilar-Galindo $^{\gamma,\delta}$, Oscar Castillo $^{\chi}$, Pilar Amo-Ochoa $^{\alpha,\delta}*$

^αDpto. de Química Inorgánica. Universidad Autónoma de Madrid, 28049 Madrid, Spain.

⁷Dpto. Química Universidad Autónoma de Madrid, 28049 Madrid, Spain ^δInstitute for Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid, 28049 Madrid, Spain

*Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain

E-mail: pilar.amo@uam.es

- 1. Experimental details
 - 1.1. Synthesis and characterization of $[ZnX_2(L)]_n$ compounds (L=BPE, and BPEE, X= Cl, Br, and I)
 - 1.2. Synthesis and characterization of $[Cu_2X_2(BPEE)]_n$ compounds (X=Cl, Br, and I)
- 2. DFT calculations to explore $[ZnX_2(BPE)]_n$ (X=Cl (1a), Br (2a), and I (3a)) theoretical band gaps and correlation with the experimental ones
- 3. Calculation of Atomic Economy (AE) and E-factor in $[ZnX_2(BPE)]_n$, $[ZnX_2(BPEE)]_n$ and $[Cu_2X_2(BPEE)]_n$ (X=Cl, Br, and I) compounds using the optimizing methodologies employing environmentally friendly procedures
- 4. DFT calculations to explore $[ZnX_2(BPEE)]_n$ (X=Cl (1b), Br (2b), and I (3b)) theoretical band gaps and correlation with the experimental ones
- 5. Study of the particle size of [ZnX₂(BPEE)]_n (X=Cl (1b), Br (2b), and I (3b)) compounds
- 6. Crystallographic data and structure analysis
- 7. Analysis of the coordination bonds distances distribution
- 8. Water and thermal stability of [ZnX₂(BPEE)]_n
- 9. DFT calculations to explore 2D $[Cu_2X_2(BPEE)]_n$ (X= Cl (4b), Br (5b), I (6b)) theoretical band gaps and correlation with the experimental ones
- 10. Study of the particle size of $[Cu_2X_2(BPEE)]_n$
- 11. Water and thermal stability of $[Cu_2X_2(BPEE)]_n$ (X=Cl (4b), Br (5b), and I (6b)) compounds
- 12. Study of the photocatalytic efficiency of [Cu₂X₂(BPEE)]_n in the degradation of Methyl blue (MB), Methyl orange (MO), and Tartrazine (Trz)
- 13. Study of the mechanism of photocatalysis via ROS species traps in CPs

1. Experimental details

1.1 Synthesis and characterization of $[ZnX_2(L)]_n$ compounds (L=BPE, and BPEE, X= Cl, Br, and I)

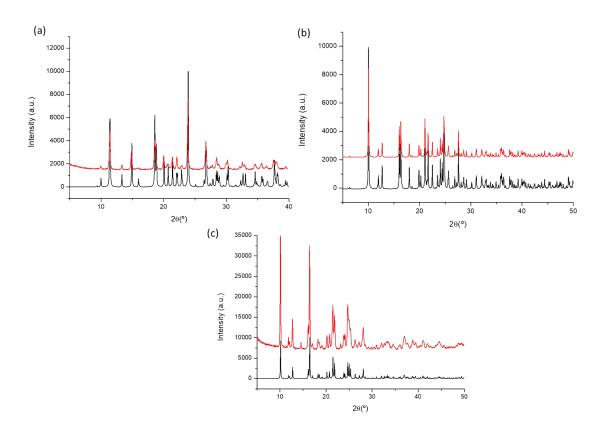


Figure S1: P-XRD of compounds: (a) 3a, b) 2a and c) 1a. P-XRD simulated (black) and experimental (red).

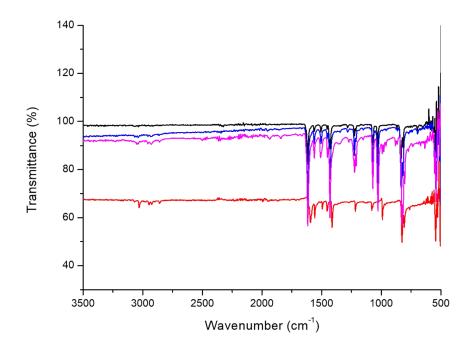


Figure S2: Infrared spectrum of compounds: 3a, pink; 2a, blue; 1a, black; and the BPE ligand, red.

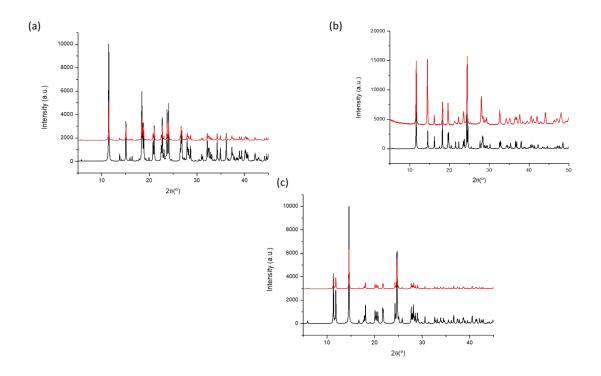


Figure S3: P-XRD of compounds (a) $3b_{,}$ (b) 2b and (c) 1b. P-XRD Simulated (black) and experimental (red).

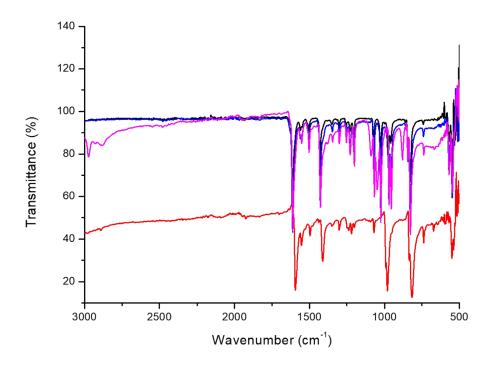
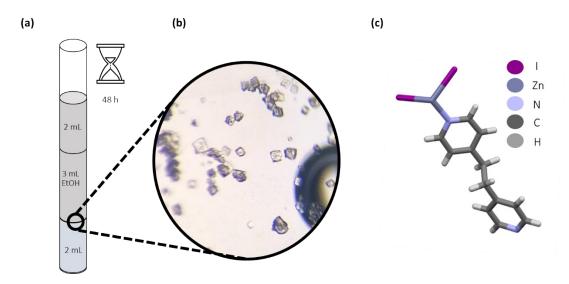
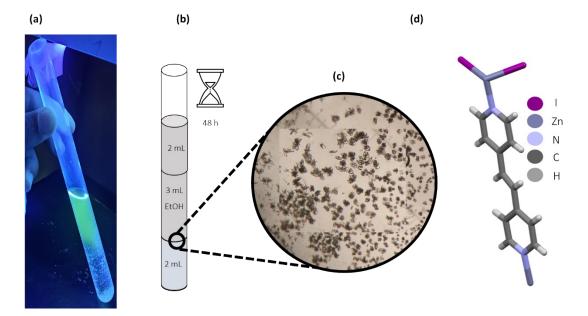




Figure S4: Infrared spectrum of compounds 3b, pink; 2b, blue; 1b, black, and BPEE ligand, red.

Figure S5. Crystallization scheme of 3a: a) The two reagents, BPE in EtOH (gray) and ZnI₂ in water (blue), overlap by dropwise addition inside a test tube where there is an EtOH intermedium to slow down the reaction between the reactants, b) Optical imagen of single crystals of 3a and c) asymmetric unit of 3a.

Figure S6. a) test tube under UV light (λ =365 nm); b) crystallization scheme of **3b**. The two reagents, BPEE in EtOH (gray) and ZnI₂ in water (blue), overlap by dropwise addition inside a test tube where there is an EtOH intermedium to slow down the reaction between the reactants, c) Optical image of single crystals of **3b** and d) asymmetric unit of **3b**.

1.2. Synthesis and characterization of $[Cu_2X_2(BPEE)]_n$ compounds (X=Cl, Br, and I).

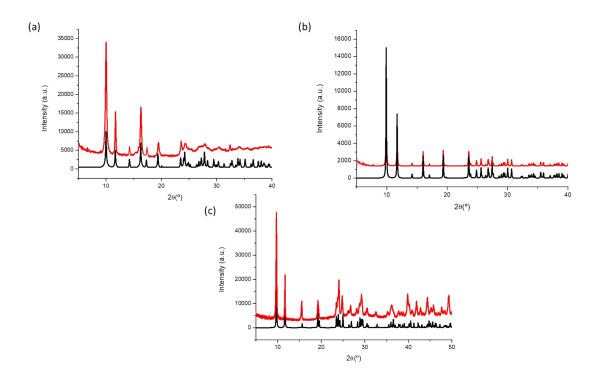


Figure S7: P-XRD of compounds (a) 4b, (b) 5b and (c) 6b. P-XRD Simulated (black) and experimental (red).

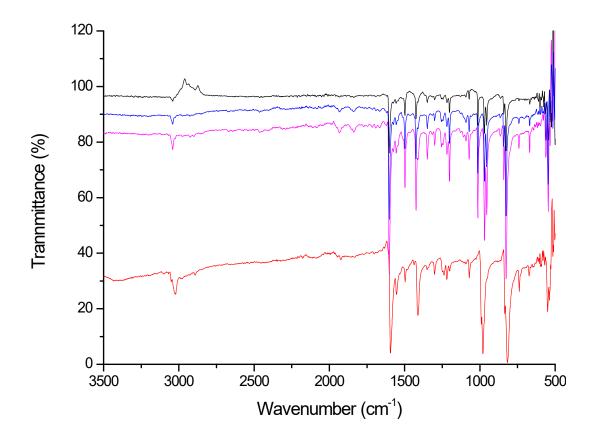
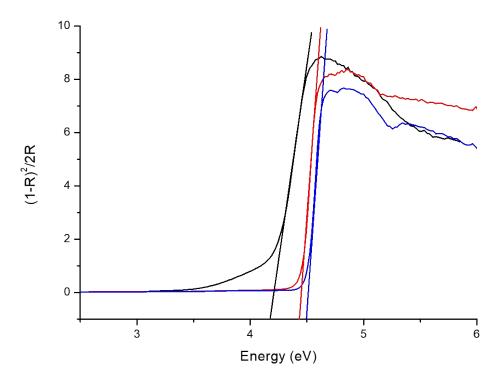
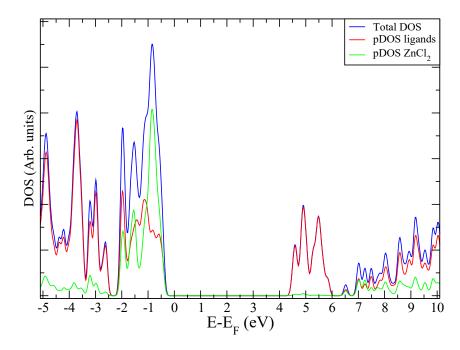
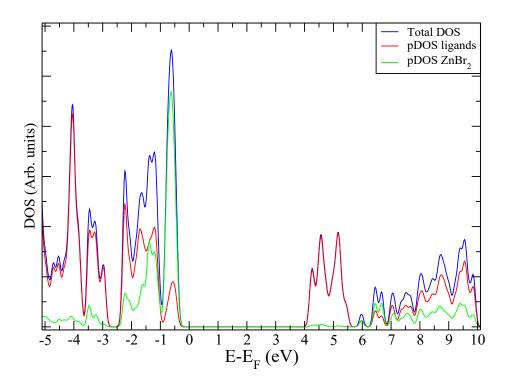


Figure S8: Infrared spectrum of compounds 6b, pink; 5b, blue; 4b, black, and BPEE ligand in red.

2. DFT calculations to explore $[ZnX_2(BPE)]_n$ (X=Cl (1a), Br (2a), and I (3a)) theoretical band gaps and correlation with the experimental ones.

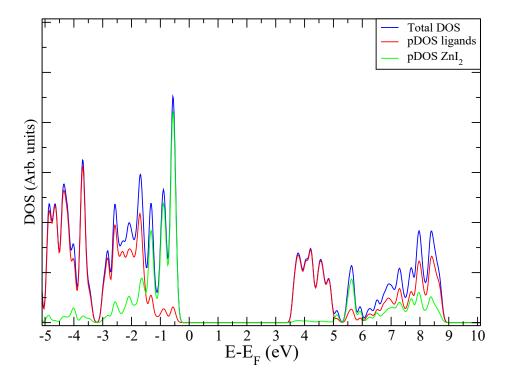

Figure S9_ Experimental Band gap values by diffuse reflectance: 3a (black), 2a (red), and 1a (blue).

Figure S10. Density of States of 1a and projection on the atoms of ligands and on the atoms of the $ZnCl_2$ unit.

Figure S11: Density of States of 2a and projection on the atoms of ligands and on the atoms of the $ZnBr_2$ unit.

Figure S12: Density of States of 3a and projection on the atoms of ligands and the atoms of the ZnI_2 unit.

Table S1. Atomic charges of the Zn, the halogen, and the nitrogen on the $[ZnX_2(BPE)]_n$ (X= Cl (1a), Br (2a), and I (3a)) compounds.

Atom	1a	2a	3a
Zn	1.20	1.12	1.02
X	-0.70	-0.64	-0.57
N	-1.32	-1.34	-1.34

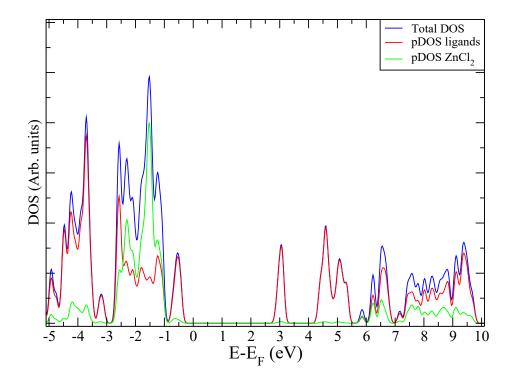

3. Calculation of Atomic Economy (AE) and E-factor in $[ZnX_2(BPE)]_n$, $[ZnX_2(BPEE)]_n$ and $[Cu_2X_2(BPEE)]_n$ (X=Cl, Br, and I) compounds using the optimizing methodologies employing environmentally friendly procedures.

Table S2. E-Factor and AE in CPs

	1a	2a	3a	1b	2b	3b	4b	5b	6b	4b*	5b*	6b*
E- factor	0,17	0,08	0,02	0,09	0,05	0,05	0,21	0,02	0,02	1.98	1.16	1.12
AE	0,77	0,85	0,87	0,78	0,84	0,83	0,86	0,9	0,84	0.33	0.46	0.36

^{*}Previously reported

4. DFT calculations to explore $[ZnX_2(BPEE)]_n$ (X=Cl (1b), Br (2b), and I (3b)) theoretical band gaps and correlation with the experimental ones.

Figure S13: Density of States of 1b, and projection on the atoms of ligands and on the atoms of the ZnCl_2 unit.

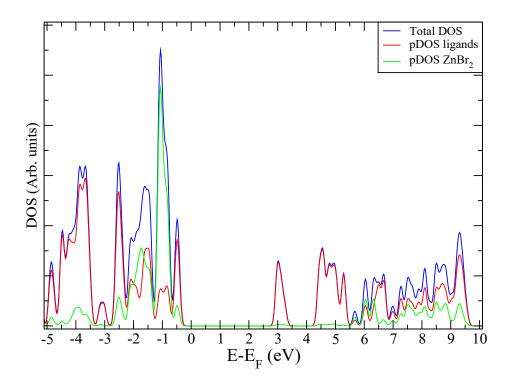


Figure S14: Density of States of 2b, and projection on the atoms of ligands and on the atoms of the $ZnBr_2$ unit.

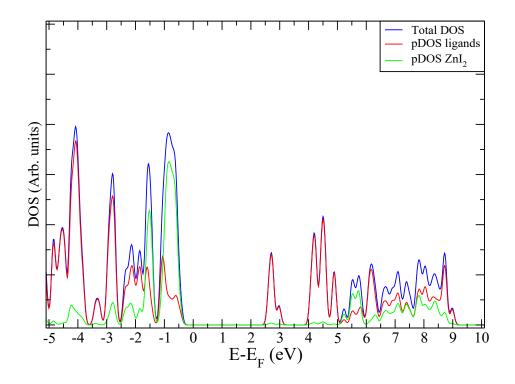


Figure S15: Density of States of 3b, and projection on the atoms of ligands and on the atoms of the ZnI_2 unit.

Table S3: Atomic charges of the Zn, the halogen, and the nitrogen on the $[ZnX_2(BPEE)]_n$ (X=Cl (1b), Br (2b), and I (3b)) compounds.

Atom	1b	2b	3b
Zn	1.20	1.12	1.02
X	-0.70	-0.64	-0.56
N	-1.35	-1.33	-1.34

5. Study of the particle size of $[ZnX_2(BPEE)]_n$ (X=Cl (1b), Br (2b), and I (3b)) compounds

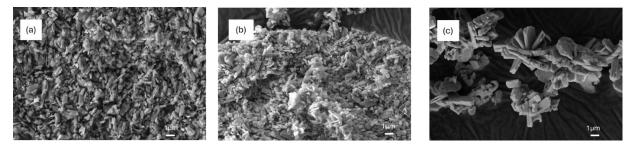


Figure S16: SEM images of the compounds: (a) 1b, (b) 2b, and (c) 3b.

Table S4: Particle size of $[ZnX_2(BPEE)]_n$ (X=Cl (1b), Br (2b), and I (3b)) measured on 50 particles

	1b	2b	3 b
Size (µm) length	0.9 ± 0.5	0.8 ± 0.3	2.5 ± 0.7
Size (µm) width	0.4 ± 0.2	$0.7 \pm 0,4$	$0.9 \pm 0,4$

6. Crystallographic data and structure analysis.

Table S5: Crystallographic data and structure refinement details of 3a, and 3b compounds. a,b

	3a	3b
empirical formula	$C_{12}H_{12}I_2N_2Zn$	$C_{12}H_{10}I_2N_2Zn$
formula weight	503.41	501.39
crystal system	Monoclinic	Triclinic
space group	C2/c (15)	P-1 (2)
a	16.3937(5)	5.8775(2)
b	11.8607(3)	8.0332(2)
С	16.2836(4)	15.8128(4)
α	90	102.779(2)
β	108.595(3)	91.996(2)
γ	90	91.958(2)
V (Å ³)	3000.91(15)	727.00(4)
Z	8	2
T (K)	200.0(1)	298(1)
λ (Å)	1.54184	0.71073
Sizes (mm)	0.12/0.07/0.02	0.25/0.10/0.01
Shape	Prism	Prism

Color	Colorless	Colorless
$\begin{array}{cccc} Max. & and & medium \\ \Delta/\sigma & & & \end{array}$	0.001/0.000	0.001/0.000
θ interval	4.690 - 68.326	2.602 – 25.364
	-19≤h≤19	-7≤h≤7
hkl interval	-13≤k≤14	_9≤k≤9
	_19 <u>≤</u> 1 <u>≤</u> 19	-18 <u>≤</u> 1 <u>≤</u> 19
$\rho_c (g \cdot cm^{-3})$	2.228	2.290
μ (cm ⁻¹)	34.422	5.916
F(000)	1872	464
Sa	1.040	1.063
R _{int}	0.0414	0.0446
Parameters	154	154
Weight scheme ^c	Shelx	Shelx
final R indices		1
$[I > 2\sigma(I)] R_1^b/wR_2^c$	0.0323/0.0870	0.0271/0.0614
all data R_1^b/wR_2^c	0.0345/0.0887	0.0331/0.0641

 ${}^{a}S = [\sum w(F_0^2 - F_c^2)^2 / (N_{obs} - N_{param})]^{1/2}. \ {}^{b}R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|. \ {}^{c}wR_2 =$ $[\sum w(F_0^2 - F_c^2)^2 / \sum wF_0^2]^{1/2}; \ w = 1 / [\sigma^2(F_0^2) + (aP)^2 + b] \ where \ P = (max(F_0^2, 0) + 2F_c^2) / 3;$ $[ZnI_2(BPE)]_n \ (a = 0.0630, \ b = 2.1271) \ and \ [ZnI_2(BPEE)]_n \ (a = 0.0256, \ b = 0.4052).$

Table S6: Selected bond lengths (Å) and angles (°) for compounds 3a, and 3b.a

2	21	
3 a	30	

Zn1-I1	2.5884(5)	2.5430(5)
Zn1-I2	2.5526(5)	2.5891(6)
Zn1-N1	2.048(3)	2.064(3)
Zn1-N2	2.056(3) ⁱ	2.065(3)
Zn1···Zn1	13.3735(8) ⁱⁱ	13.4718(10) ⁱⁱⁱ
I1-Zn1-I2	121.62(2)	124.69(2)
I1-Zn1-N1	107.09(9)	108.69(10)
I1-Zn1-N2	107.90(9) ⁱ	109.17(10)
I2-Zn1-N1	108.04(9)	104.09(10)
I2-Zn1-N2	107.30(9)i	103.46(10)
N1-Zn1-N2	103.45(14) ⁱ	105.12(14)

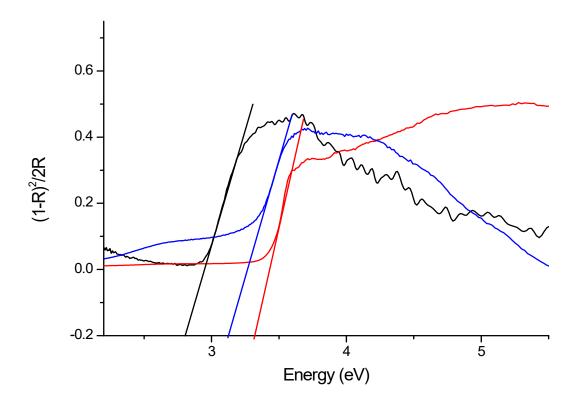
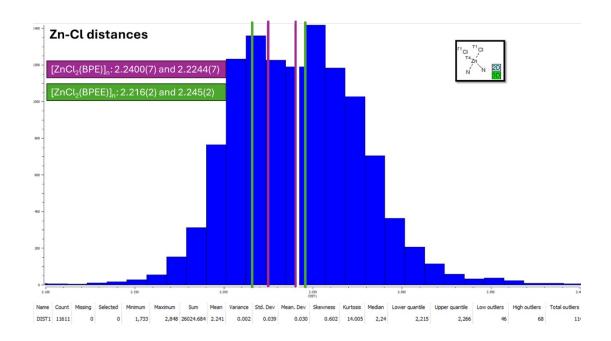
aSymmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+2, -y+1, -z+2.

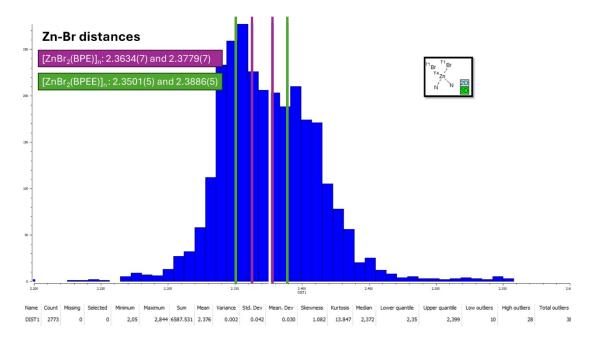
Table S7: Hydrogen bonding interactions in compounds 3a, and 3b.a

3a			
D–HAb	НА	DA	D-HA
C11–H11I1 ⁱ	3.09	3.767(4)	129.9
C5–H5I1	3.16	3.806(4)	126.6
C4-H4···I2 ⁱⁱ	3.31	4.094(4)	141.5
C10-H10···I1 ⁱⁱⁱ	3.28	3.900(4)	124.9
C2-H2I1 ^{iv}	3.29	4.217(4)	165.1
3b			
D–HAb	НА	DA	D-HA
C1 H1 I1	3.26	3.873(4)	125.3
C4 H4 I2 ⁱ	3.29	4.021(5)	137.2
C5 H5 I2	3.26	3.799(5)	119.1
C7 H7 I1	3.28	3.888(4)	124.7
C11 H11 I2	3.19	3.758(4)	121.6

aSymmetry codes for 3a: (i) x-1/2, -y+1/2, z-1/2; (ii) x, -y+1, z-1/2; (iii) 5_{666} -x+1, -y+1, -z+1; (iv) x-1/2, y-1/2, z. Symmetry codes for 3b: (i) 2_{677} -x+1, -y+2, -z+2.

b D = donor; A = acceptor.


Figure S17. Band gap experimental value by diffuse reflectance: 1b, black, 2b red, and 3b, blue.

7. Analysis of the coordination bonds distances distribution.

Coordination bond distribution found in the CSD database for ZnX_2N_2 (X = Cl, Br, and I) coordination environments in which the actual coordination bond distances of $[ZnX_2(BPE)]_n$ and $[ZnX_2(BPEE)]_n$ have been included as vertical lines. The color code is indicated in the graph. The vertical white line corresponds to the median value.

Figure S18: Zn-Cl coordination bond distances found in compounds: (a) [ZnCl₂(BPE)]_n and [ZnCl₂(BPEE)]_n placed within the distribution found in the CSD database for analogous ZnCl₂N₂ coordination environments.

Figure S19: Zn-Br coordination bond distances found in compounds: (a) $[\mathbf{ZnBr_2(BPE)}]_n$ and $[\mathbf{ZnBr_2(BPEE)}]_n$ placed within the distribution found in the CSD database for analogous $\mathbf{ZnBr_2N_2}$ coordination environments.

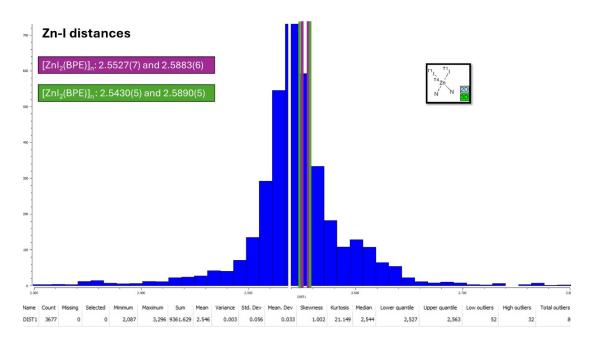


Figure S20: Zn-I coordination bond distances found in compounds: (a) $[ZnI_2(BPE)]_n$ and $[ZnI_2(BPEE)]_n$ placed within the distribution found in the CSD database for analogous ZnI_2N_2 coordination environments.

8. Water and thermal stability of $[ZnX_2(BPEE)]_n$.

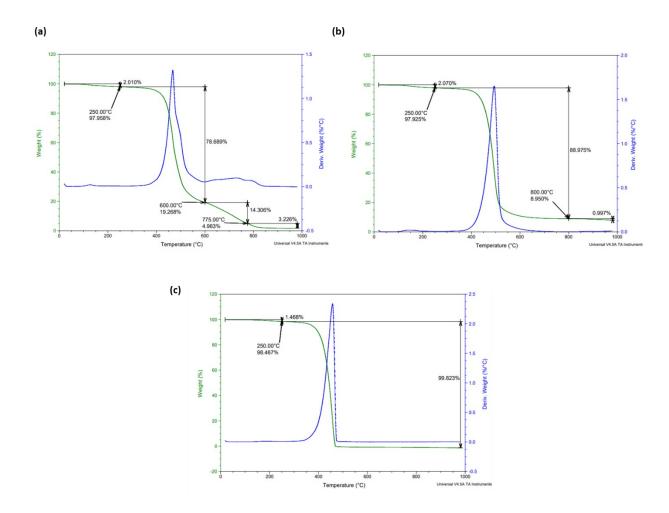
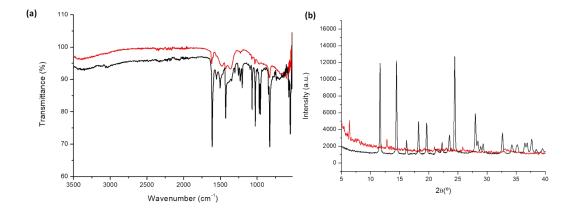



Figure S21: Thermogravimetric analysis (TGA) of the compounds: a) 1b, b) 2b and c) 3b.

Figure S22: Example of water behavior of **2b**: a) IR and b) P-XRD initial (black) and [pH > 8.5] (red)

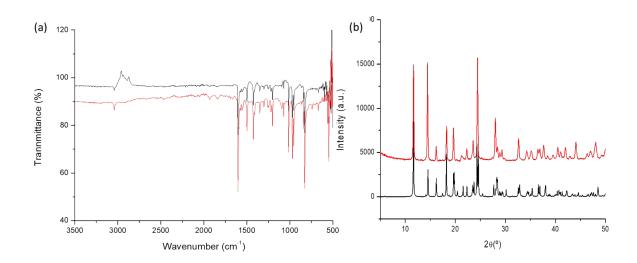
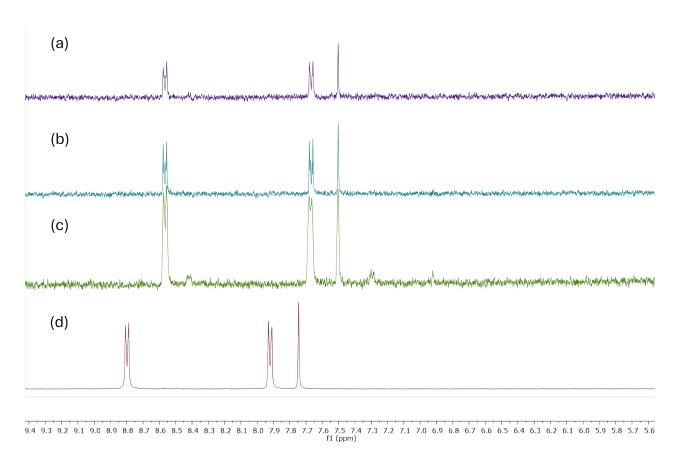



Figure S23: Example 2b: a) IR and b) P-XRD initial (black) and $4.2 \le pH \le 8.4$ (red)

Figure S24: 1 H-NMR study with **3b** in D₂O: a) t_0 , b) dark t_f = 20 min, c) irradiation (t_f = 20 min in photoreactor 300-600 nm), and d) BPEE in D₂O.

Table S8: ¹H-NMR assignment with BPEE / [ZnI₂(BPEE)]_n and irradiation (hv) in D₂O

Compound	(a)	(b)	(c)
BPEE	7.75s	7.91d	8.82d
3b	7.45s	7.65d	8.55d
3b + 20 min in photoreactor	7.45 + 6.9s	7.65 + 7.3d	8.55 + 8.4d

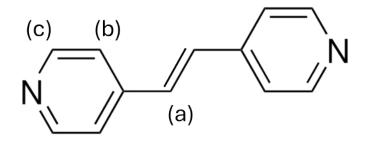


Figure S25: Proton assignment in the free ligand BPEE

9. Study of the particle size of $[Cu_2X_2(BPEE)]_n$

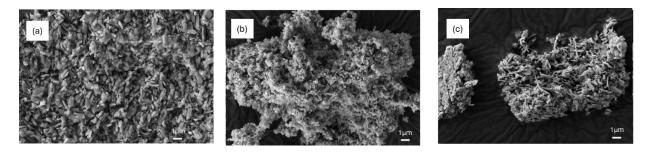
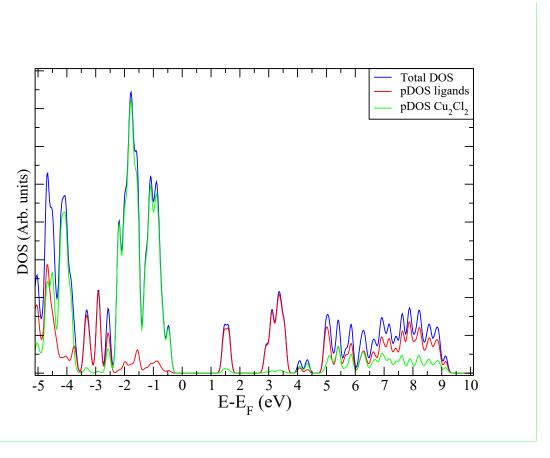
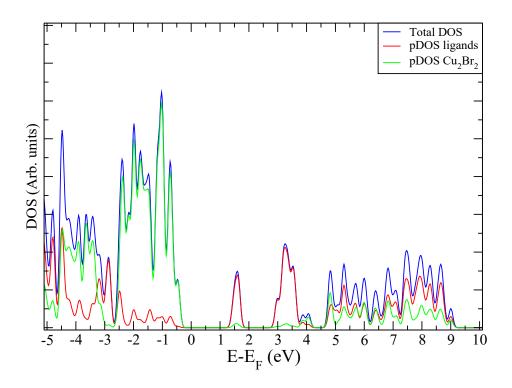



Figure S26: SEM of the compounds: a) 4b, b) 5b, and c) 6b.


Table S9: Particle size with the average of $[Cu_2X_2(BPEE)]n$ compounds over 50 particles.

	4b	5b	6b
Size (µm) length	1.1 ± 0.5	0.9 ± 0.5	1.1 ± 0.7
Size (µm) width	0.5 ± 0.2	0.2 ± 0.07	0.4 ± 0.2

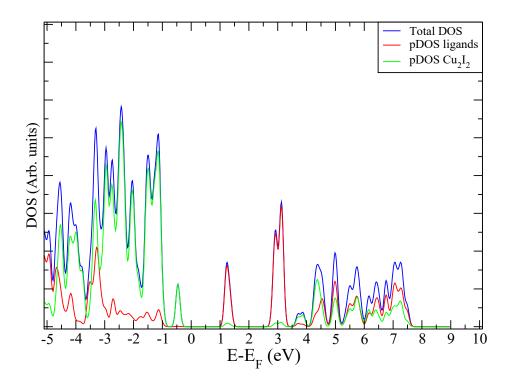

10. DFT calculations to explore 2D $[Cu_2X_2(BPEE)]_n$ (X= Cl (4b), Br (5b), I (6b)) theoretical band gaps and correlation with the experimental ones.

Figure S27: Density of States of 4b, and projection on the atoms of ligands and the atoms of the Cu_2Cl_2 unit.

Figure S28: Density of States of 5b, and projection on the atoms of ligands and the atoms of the Cu_2Br_2 unit.

Figure S29: Density of States of **6b**, and projection on the atoms of ligands and the atoms of the Cu_2I_2 unit.

Table S10: Atomic charges of the Cu, the halogen, and the nitrogen on the $[Cu_2X_2(BPEE)]_n$ compounds.

Atom	4b	5b	6b
Cu	0.62	0.54	0.44
X	-0.67	-0.59	-0.46
N	-1.27	-1.27	-1.26

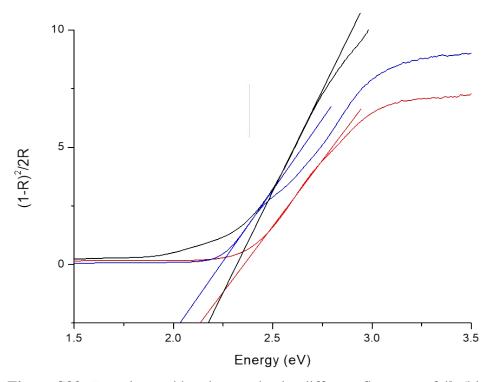
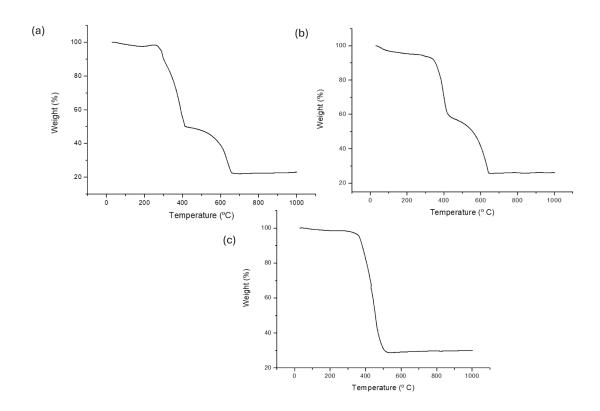
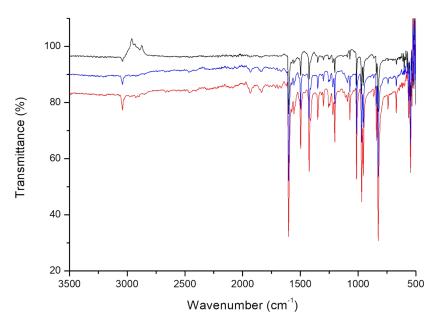
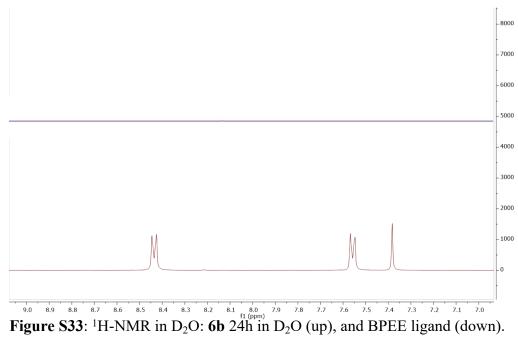
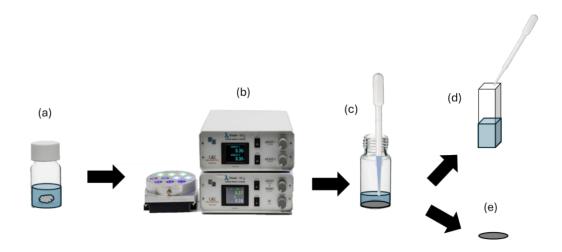
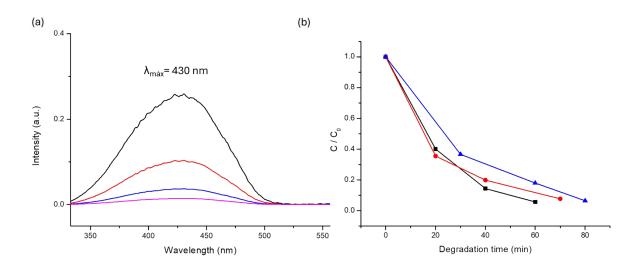


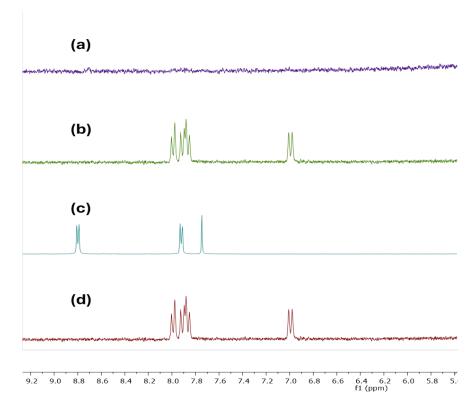
Figure S30: Experimental band gap value by diffuse reflectance of 4b (black), 5b, (red), and 6b (blue).

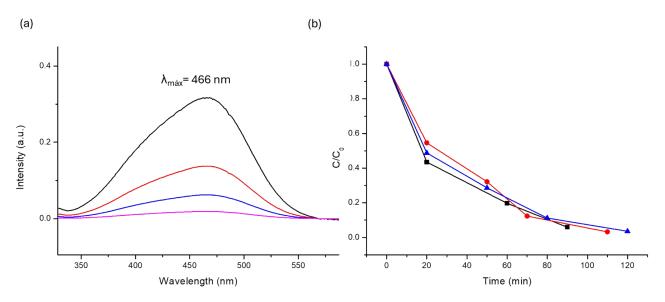
11. Water and thermal stability of $[Cu_2X_2(BPEE)]_n$ (X=Cl (4b), Br (5b), and I (6b)) compounds.

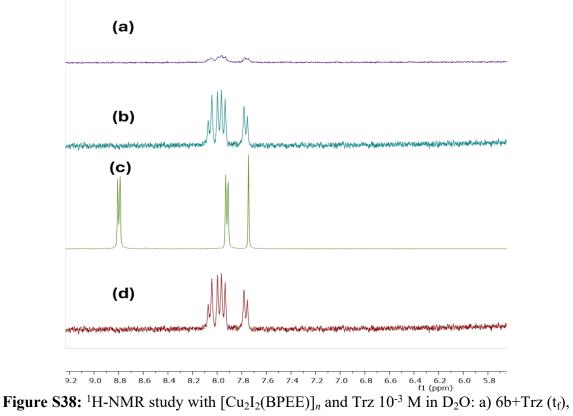




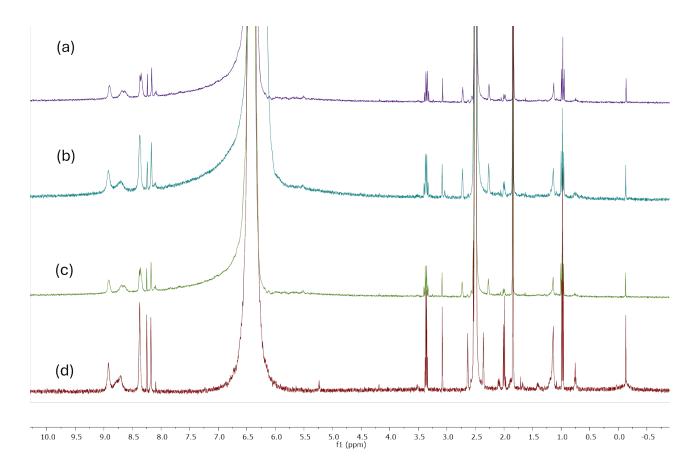

Figure S31. Thermogravimetric analysis (TGA) of the compounds: a) 4b, b) 5b, and c) 6b.

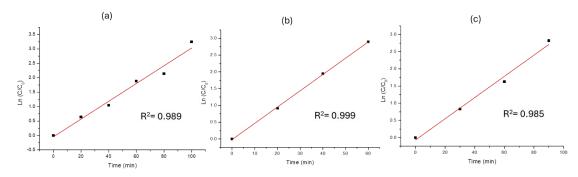

Figure S32: IR of $[Cu_2I_2(BPEE)]_n$ (**6b**) (black), between $2 \le pH \le 7$ (red), and between $7 \le pH \le 11$ (blue).


12. Study of the photocatalytic efficiency of [Cu₂X₂(BPEE)]_n in the degradation of Methyl blue (MB), Methyl orange (MO), and Tartrazine (Trz).


Figure S34: Degradation process of dyes with the compounds in the photoreactor: a) 2 mg of catalyst compound is mixed with a 10⁻⁵M organic dye aqueous solution, b) the vial is introduced into the white light photoreactor (300-600 nm) under agitation, c) the degraded dye is separated from the catalyst, d) absorbance loss of dyes by UV-vis is studied, and e) the catalyst is characterized to confirm that it maintains the structure and acts as a heterogeneous catalyst.


Figure S35: MO dye degradation: a) UV-vis degradation from 0 to 60 min for **6b** and b) plots of MO absorbance intensity loss as a function of exposure time under photoreactor, **6b** (black), **5b** (red), **4b** (blue).


Figure S36: 1 H-NMR study with $[Cu_{2}I_{2}(BPEE)]_{n}$ (**6b**) and MO 10⁻³ M in D₂O: a) 6b+MO (t_f 60 min), b) 6b+MO (t₀). c and d) BPEE and MO, after 60 min in D₂O respectively.


Figure S37: Trz dye degradation: a) UV-vis degradation from 0 to 90 min for $[Cu_2I_2(BPEE)]_n$, and b) plots of Trz absorbance intensity loss as a function of exposure time under photoreactor. $[Cu_2I_2(BPEE)]_n$ (black), $[Cu_2Br_2(BPEE)]_n$ (red), and $[Cu_2Cl_2(BPEE)]_n$ (blue).

b) Trz (t_0), c and d) BPEE and Trz, after 60 min in $D_2\mathrm{O}$ respectively.

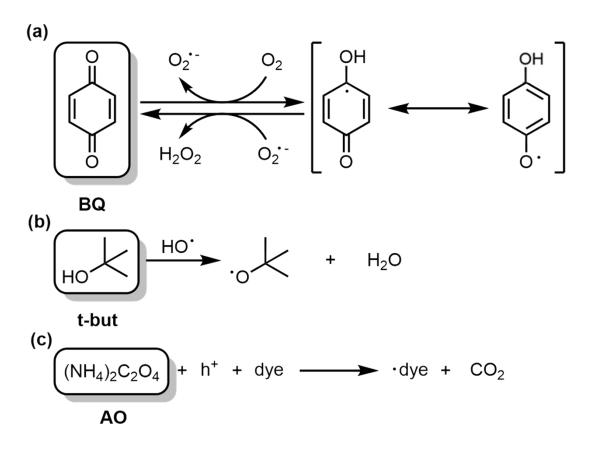


Figure S39: 1 H-NMR study with $[Cu_{2}I_{2}(BPEE)]_{n}$ (**6b**) post degradation of the dyes dissolved in DMSO-d₆ (+ two drops of DCl). After the degradation of MB (a), Trz (b), and MO (c). Initial $[Cu_{2}I_{2}(BPEE)]_{n}$ dissolved in DMSO-d₆ (+ two drops of DCl) (d).

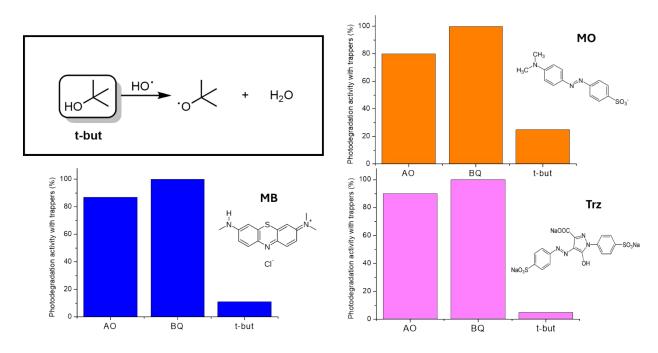


Figure S40. Reaction kinetics of compound $[Cu_2I_2(BPEE)]_n$: order 1 in a) MB, b) MO, and c) Trz.

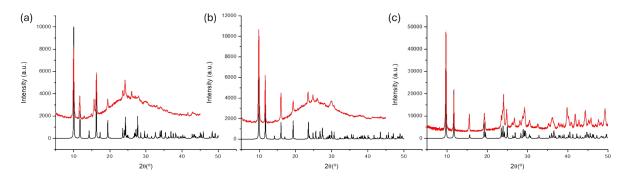

13. Study of the mechanism of photocatalysis via ROS species traps in CPs

Figure S41: Trappers: a) benzoquinone (BQ) ·**OH**, tert-butanol (t-but) ·**O₂**⁻ and c) ammonium oxalate (AO) (**h**⁺)

Figure S42: Photocatalytic activity of dyes 10^{-5} M with $[Cu_2X_2(BPEE)]_n$ hole/radical trapper agents after. The degradation of dyes is via radical (**·OH**).

Figure S43: P-XRD of compounds (a) **4b**, (b) **5b** and (c) **6b**. P-XRD Simulated (black) and after the maximum number of cycles of dye (MO) degradation (red).