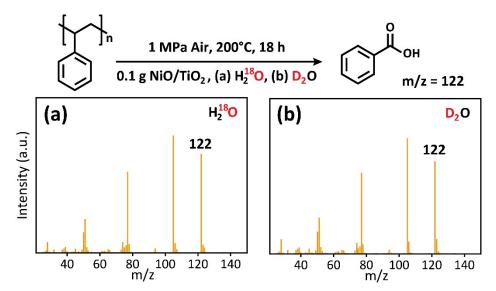
Supporting Information


Heterogeneous Oxidative Upcycling of Polystyrene Plastics to Benzoic

Acid under Air Conditions

Chengyang Sun, Yong Guo, Xiaohui Liu, Yanqin Wang*

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

E-mail: wangyanqin@ecust.edu.cn

Fig. S1. Mass spectra of benzoic acid after isotopic experiments using (a) $H_2^{18}O$ and (b) D_2O . Reaction conditions: 0.2 g PS, 0.1 g NiO/TiO₂, 5 g $H_2^{18}O$ or D_2O , 1 MPa Air, 200°C, 18 h.

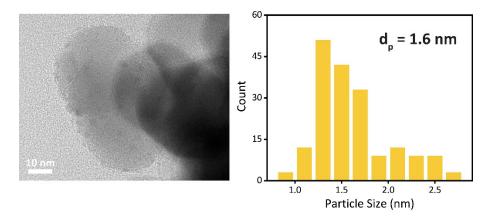
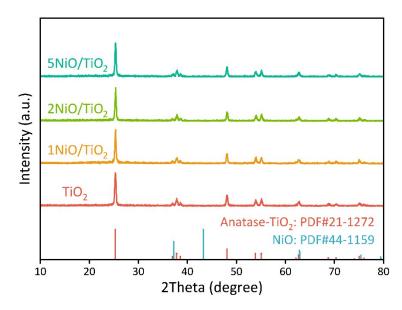



Fig. S2. TEM image and particle size distributions of 2NiO/TiO₂.

Fig. S3. XRD patterns of TiO_2 , $1NiO/TiO_2$, $2NiO/TiO_2$ and $5NiO/TiO_2$ catalysts. In the XRD patterns of three NiO/TiO₂ catalysts, no diffraction peaks of NiO can be observed, indicating NiO species were well dispersed on TiO_2 support.

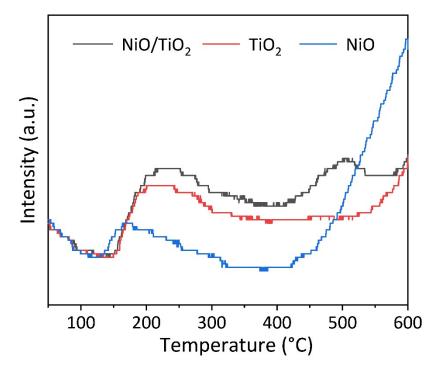
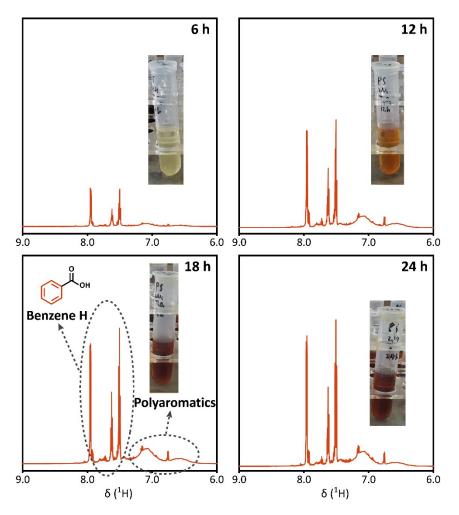



Fig. S4. O_2 -TPD profiles of NiO/TiO₂, TiO₂ and NiO.

Fig. S5. Products analysis by ¹H NMR (DMSO-D6 as solvent) of different reaction time, and the corresponding photo showing the color of products.

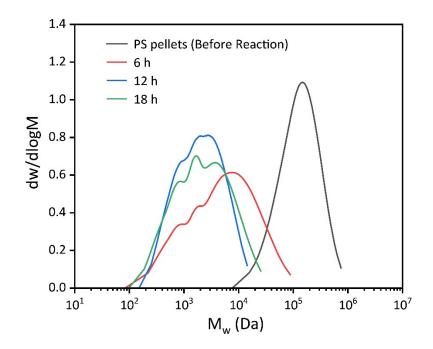


Fig. S6. Molecular weight distribution of polystyrene residues after different reaction time measured by GPC.

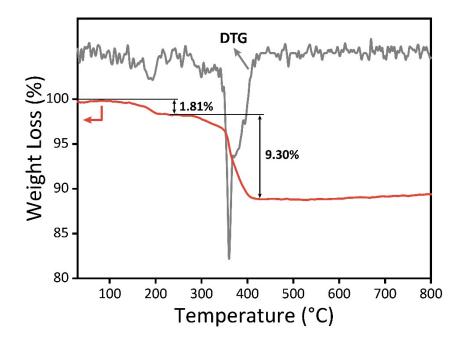


Fig. S7. TG and DTG profiles of spent NiO/TiO₂ catalyst.

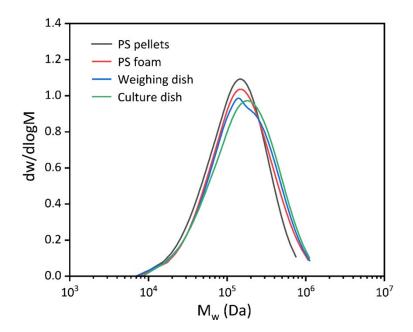
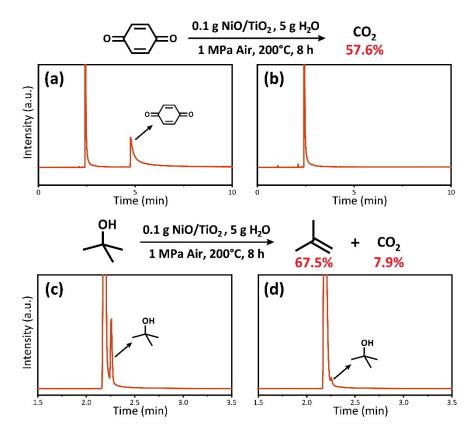
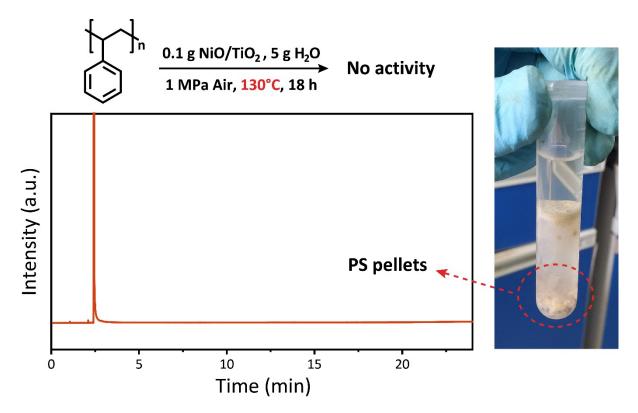




Fig. S8. Molecular weight distribution of the polystyrene samples measured by GPC.

Fig. S9. GC/MS chromatograms and products indicating the consumption of radical quenchers: 1,4-benzoquinone (a) before reaction and (b) after 8 h oxidation, tert-butanol (c) before reaction and (d) after reaction. Reaction conditions: 0.1 g quencher, 0.1 g NiO/TiO₂, 5 g H₂O, 1 MPa Air, 200°C, 8 h.

Fig. S10. GC/MS chromatogram of PS oxidative upcycling under lower temperature. Reaction conditions: 0.2 g PS, 0.1 g NiO/TiO₂, 5 g H₂O, 1 MPa Air, 130°C, 18 h.

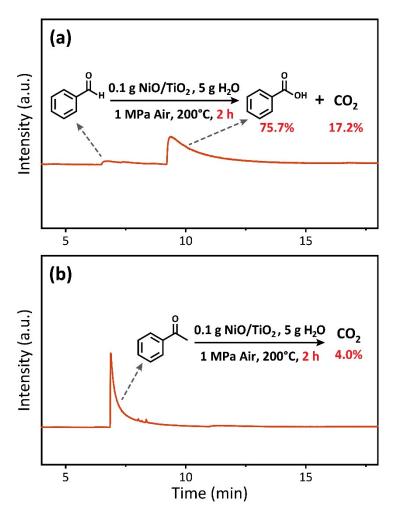


Fig. S11. GC/MS chromatograms and products of (a) benzaldehyde and (b) acetophenone after 2 h oxidation reaction. Reaction conditions: 0.2 g substrate, 0.1 g NiO/TiO₂, 5 g H₂O, 1 MPa Air, 200°C, 2 h.

Entry	Catalyst	Surface area	Pore volume	Pore size	Ni content ^a
		(m²/g)	(cm ³ /g)	(nm)	(wt%)
1	TiO ₂	43.3	0.27	15.4	-
2	1NiO/TiO ₂	36.0	0.26	17.5	1.6
3	2NiO/TiO ₂	34.4	0.25	18.3	3.0
4	5NiO/TiO ₂	31.6	0.24	18.6	6.0
5	2NiO/TiO ₂ -spent	-	-	-	2.4

Table S1. Summary of physical properties of NiO/TiO₂ catalysts.

^a Determined by ICP-AES.

	5		
Entry	Sample	M _w (Da)	PDI
1	PS pellets	177873	2.05
2	PS-6 h	11724	6.51
3	PS-12 h	4146	3.68
4	PS-18 h	3052	2.51

Table S2. Weight-average molecular weight (M_w) and polymer dispersity index (PDI) of polystyrene samples obtained by GPC measurements.

Table S3. Weight-average molecular weight (M_w) and polymer dispersity index (PDI) of polystyrene samples obtained by GPC measurements.

Entry	Sample	M _w (Da)	PDI
1	PS pellets	177873	2.05
2	Culture dish	239342	2.35
3	Weighing dish	228416	2.35
4	PS foam	217162	2.22

Table S4. Elementary composition of PS samples determined by Elemental analyzer.

Entry	Sample	C (wt%)	H (wt%)
1	PS-C ₈ H ₈ (Theoretical)	92.3	7.7
2	PS pellets	92.6	8.1
3	Culture dish	92.7	7.9
4	Weighing dish	88.6	7.9
5	PS foam	91.3	7.6