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Figure S1. The UV-Vis absorbance spectra of the tetracycline (TC, 20 mg/L) degradation 
under light illumination (a) with and (b) without HF-CNS as photocatalyst for different time.

Figure S2. The initial configuration of BCN and CNS.
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Surface area and pore size distribution

Nitrogen adsorption-desorption measurements were performed to investigate the BET 

(Brunauer-Emmett-Teller) surface area and pore size distribution of different samples. It can 

be clearly seen in Figure S2 that all samples exhibit type V isotherms with H3 hysteresis loops 

in the high relative pressure range between 0.5 and 1.0, suggesting that all the samples have 

mesoporous structure (1). Based on the N2 adsorption-desorption curves, the BCN shows the 

lowest BET surface area (18.65 m2/g). However, after ethanol-thermal treatment and fluorine 

assisted ethanal treatment, the BET specific surface area of BCN was increased to 128.03 

m2/g and 159.87 m2/g, respectively, indicating that the ethanol-thermal treatment could 

effectively improve the surface area of g-C3N4, especially after the HF acid assisted ethanol-

thermal treatment. This tendency is consistent with the above results of SEM and HR-TEM 

images, supporting the morphologic structure variation of BCN, CNS and HF-CNS.

Figure S3. N2 adsorption-desorption isotherm curves of the BCN, HF-CNS-0, HF-CNS-1, 
HF-CNS-2 and HF-CNS-3 measured at 77 K by the Brunauer-Emmett-Teller (BET) method.



Figure S4. SEM-EDS elemental mappings of the CNS.

Figure S5. The magnified XRD patterns of BCN, CNS and HF-CNS-2 from 26o to 29o.



Table S1. The element composition of as-prepared catalysts (C, N, O, F atomic %) for BCN, 
CNS and F-CNS calculated from the XPS survey spectra.

C N O F C/N

BCN 42.6 56.52 0.88 0 3/3.98 0.75

CNS 40.35 56.98 2.67 0 3/4.23 0.71

HF-CNS-2 43.08 52.11 3.99 0.81 3/3.56 0.84

Table S2. The content ratio of function groups in the samples obtained in the high-resolution 
C 1s spectra.

C-OH N-C=N

BCN 1.30 19.62

CNS 6.25 14.51

HF-CNS-2 5.65 14.34



Figure S6. The XPS survey scan (a) and the high-resolution XPS of (b) F 1s and (c) O 1s 
spectra of BCN, CNS and F-CNS-2.

Table S3. The content ratio of function groups in the samples obtained in the high-resolution 
N 1s spectra.

C-N=C N-(C)3 C-N-H π-excitations

BCN 58.67 23.28 7.82 10.22

CNS 61 21.47 6.09 11.45

HF-CNS-2 51.34 30.2 10.77 7.68

(a) (b)

(c)



Figure S7. (a) The possible types of HF-CNS in the red dashed cycles, (b) possible types of 
HF-CNS-3 are shown in the red dashed cycles.

Figure S8. The band energy of the BCN, CNS and HF-CNS-X (X=1, 2, 3).



   Figure S9. Pseudo-first-order curve fitting for different samples.

Table S4. A comparison of g-C3N4 prepared from different precursors as 
photocatalysts.

Carbon 
nitride Precursors Application Activity Ref.

Polymeric 
C3N4

Dicyandiamide; 5-bromo-
2-
thiophenecarboxaldehyde; 
NH4Cl

H2 production 
2.448 
mmol 
g−1 h−1

(2)

F-doped 
g-C3N4

melamine H2 production 6 µmol 
g−1 h−1 (3)

g-C3N4
soaking melamine in 
aqueous solutions H2 production

1.82 
µmol 
g−1 h−1

(4)

F-doped 
g-C3N4

urea Photodegradation 
of Rhodamine B

0.02 
min-1 (1)

Chloride-
modified 
g-C3N4

urea CO2 reduction
14 
µmol 
g−1 h−1

(5)

F-doped 
g-C3N4

melamine H2 production
1.1 
mmol 
h−1

this 
work

F-doped 
g-C3N4

melamine TC degradation
0.0079 
min-1

this 
work
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