Supporting Information

Hydrogenation of sulfoxides to sulfides mediated by incomplete cubane-type Mo_3S_4 clusters: synthetic applications and mechanistic insights

Juanjo Mateu-Campos,^a María Gutiérrez-Blanco,^a Eva Guillamón ,^a Vicente S. Safont^a and Rosa Llusar,^{*a}

^{*a*} Departament de Química Física i Analítica, Universitat Jaume I. Av. Sos Baynat s/n, 12071 Castelló de la Plana, Spain

Table of contents

1. Materials and methods	2
2. General procedures for the catalytic reactions	2
3. Conditions optimization for the hydrogenation of diphenyl sulfoxide	3
4. Cluster monitoring	5
5. Recycling experiments	5
6. Synthesis of sulfoxides	6
7. Characterization data of isolated compounds	10
8. ¹ H and ¹³ C NMR spectra of isolated compounds	15
9. Mechanistic experiments	36
10. Computational details	36
11. References	75

1. Materials and methods

All reactions were performed under free atmosphere, unless otherwise stated. Cluster complexes employed in this work were prepared according to the published procedures. All other reagents were obtained from commercial sources and used as received or prepared according to the literature.

Elemental analyses were performed with a Euro EA 3000 Elemental Analyzer. Mass spectra were registered in a QTOF Premier instrument operated in the V-mode at a resolution of *ca*. 10000 (FWHM) equipped with an orthogonal Z-spray-electrospray interface (Waters, Manchester, UK). The temperature of the source block was set to 100 °C, and the desolvation temperature was set to 120 °C. A capillary voltage of 3.3 kV was used in the positive scan mode, and the cone voltage was set to Uc = 20 V. Sample solutions in CH₃CN or CH₃OH (0.1 % formic acid for organic compounds) were injected with a syringe pump directly connected to the ESI source at a flow rate of 10 μ Lmin⁻¹. The observed isotopic pattern of each compound perfectly matched the theoretical isotope pattern calculated from their elemental composition by using the MassLynx 4.1 program.^[1] ¹¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Avance III HD 300 MHz or 400 MHz spectrometer. Gas chromatography analyses were performed on an Agilent 7820A GC System equipped with a FID and a capillary column Agilent (HP-5, 30m x 0.32mm x 0.25 µm). The GC yields were determined by GC-FID using *n*-hexadecane as an internal standard.

2. General procedures for the catalytic reactions

2.1. General procedure for the catalytic hydrogenation of sulfoxides (0.1 mmol). General procedure A:

A 4 mL glass vial containing a stirring bar was charged with the molybdenum catalyst (0.0050 mmol of $[Mo_3S_4Cl_3(dmen)_3]Cl$), sulfoxide (0.1 mmol), internal standard (20 µL of hexadecane) and 3 mL of CH₃CN. Afterwards, the reaction vial was capped with a septum equipped with a syringe and set in the alloy plate and then introduced into a 300 mL autoclave. Once sealed, the autoclave was purged three times with 20 bar of hydrogen, then pressurized to 6 bar of hydrogen and placed into an aluminium block preheated at 50 °C. After 12 h, the autoclave was cooled to room temperature and the hydrogen was released. Ethyl acetate (2 mL) was then added, and a sample was taken to be analyzed by GC.

2.2. General procedure for the catalytic hydrogenation of sulfoxides (0.3 mmol). General procedure B:

A 8 mL glass vial containing a stirring bar was charged with the molybdenum catalyst (0.0050 mmol of [Mo₃S₄Cl₃(dmen)₃]Cl), sulfoxide (0.3 mmol) and 6 mL of CH₃CN. Afterwards, the reaction vial was capped with a septum equipped with a syringe and set in the alloy plate and then introduced into a 300 mL autoclave. Once sealed, the autoclave was purged three times with 20 bar of hydrogen, then pressurized to 6 bar of hydrogen and placed into an aluminium block preheated at 50 °C. After 18 h, the autoclave was cooled to room temperature and the hydrogen was released. To determine the isolated yields of the sulfide product, after completion of the reaction the mixture was taken to dryness and purified by flash silica gel chromatography (pentane/ethyl acetate mixtures) to give the corresponding pure product.

3. Conditions optimization for the hydrogenation of diphenyl sulfoxide

hydrogenation of diphenyl sulfoxide (1)^[a]

Entry	Solvent	Conversion (%) ^[b]	Yield (%) ^[b]
1	CH ₃ CN	>99	>99
2	H_2O	23	19
3	Triglyme	28	14
4	Glicerol	10	8
5	Propilene carbonate	49	45
6	CH ₃ OH	57	56

^[a] Reaction conditions: diphenyl sulfoxide (0.1 mmol), catalyst (5 mol%), 70 °C, H₂ pressure (20 bar), solvent (3 mL), 18 h. ^[b] Determined by GC using hexadecane as an internal standard.

hydrogenation of diphenyl sulfoxide (1)^[a]

Entry	H ₂ Pressure (bar)	Conversion (%) ^[b]	Yield (%) ^[b]
1	20	>99	>99
2	10	>99	>99
3	6	>99	>99
4	1-2	15	10

[a] Reaction conditions: diphenyl sulfoxide (0.1 mmol), catalyst (5 mol %), 70 °C, H₂ pressure, CH₃CN (3 mL), 18 h. ^[b] Determined by GC using hexadecane as an internal standard.

hydrogenation of diphenyl sulfoxide (1)^[a]

Entry	Temperature (°C)	Conversion (%) ^[b]	Yield (%) ^[b]
1	70	>99	>99
2	60	>99	>99
3	50	>99	>99
4	40	75	73

[a] Reaction conditions: diphenyl sulfoxide (0.1 mmol), catalyst (5 mol %), T (°C), 6 bar H₂, CH₃CN (3 mL), 18 h. ^[b] Determined by GC using hexadecane as an internal standard.

hydrogenation of diphenyl sulfoxide (1)^[a]

Entry	X mol %	Conversion (%) ^[b]	Yield (%) ^[b]
1	0	3	0
2	1	19	14
3	3	72	72
4	5	>99	>99

[a] Reaction conditions: diphenyl sulfoxide (0.1 mmol), catalyst (X mol %), 70 °C, 6 bar H₂, CH₃CN (3 mL), 18 h. ^[b]
Determined by GC using hexadecane as an internal standard.

4. Cluster monitoring

Figure S1. HRMS (ESI-TOF) spectra of catalyst 5^+ after diphenyl sulfoxide hydrogenation at different times. Spectra registered from different batch experiments at 20 V in CH₃CN.

5. Recycling experiments

Recycling experiments were performed by successive additions of diphenyl sulfoxide to the reaction mixture. After the fifth run, the reaction crude was concentrated under reduced pressure and the solid residue was washed three times with 5 mL of ethyl acetate and dried under vacuum. After that, the solid sample was analyzed by HRMS spectrometry and ¹H-NMR spectroscopy to confirm the integrity of the cluster catalyst.

Recycling experiments were also conducted by sample evaporation. Then, 5 mL of ethyl acetate were added to remove organics and the catalyst was dried under vacuum. Finally, the catalyst was redissolved in acetonitrile and the mixture was transferred to the reaction vial with diphenyl sulfoxide for the next run.

Figure S2. HRMS (ESI-TOF) spectrum of catalyst **5**⁺ after recycling experiments. Spectrum registered at 20 V in CH₃CN (a). ¹H-NMR (400 MHz, CD₃CN) spectra of catalyst **5**⁺ before and after recycling experiments.

6. Synthesis of sulfoxides

6.1 Synthesis of diaryl sulfoxides

Bis(4-trifluoromethylphenyl) sulfoxide (1d)

Step A: The synthesis of this compound was adapted from the literature.^[2] A mixture of 4trifluoromethylbenzenethiol (0.95 g, 5 mmol), 4-iodobenzotrifluoride (1.43 g, 5 mmol), *n*-Bu₄NBr (0.18 g, 0.5 mmol) and NaOH (0.43 g, 10 mmol) and CuI (110.3 mg, 0.5 mmol) in toluene (6 mL) was stirred under reflux for 72 h. The reaction mixture was allowed to reach room temperature, then 10 mL of NH₄Cl (sat. aqueous solution) were added. The aqueous phase was separated and extracted with EtOAc (3 x 10 mL), the combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Hexane) to give the corresponding sulfide as a white solid (520.0 mg, 31%). ¹**H-NMR** (300 MHz, CDCl₃): δ = 7.62(d, J = 9.0 Hz, 4H), 6.48 (d, J = 9.0 Hz, 4H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 139.7, 131.1, 129.9 (q, J = 37.5 Hz), 125.8 (q, J = 3.7 Hz), 122.7 (q, J = 270.1 Hz). ¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -62.8.

Step B: To a solution of bis(4-(trifluoromethyl)phenyl)sulfide (404.0 mg, 1.25 mmol) in CH₂Cl₂ (2 mL) was added *m*-CPBA (300.9 mg, 1.38 mmol) slowly at 0 °C and the mixture was stirred at this temperature for 4 h. Then the mixture was warmed to room temperature and stirred overnight. After that, the mixture was quenched with 4 mL of NaHCO₃ (sat. aqueous solution). The aqueous layer was then extracted with CH₂Cl₂ (3×10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Hexane:EtOAc = 9:1) to give the title compound **1d** as a white solid. (192.1 mg, 45%). ¹**H-NMR** (300 MHz, CDCl₃): δ = 7.71(d, J = 8.8 Hz, 4H), 6.57 (d, J = 8.8 Hz, 4H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 144.5, 137.4, 134.0 (q, J = 32.4 Hz), 130.8 (q, J = 3.8 Hz), 128.7 (q, J = 270.2 Hz). ¹⁹**F-NMR** (282 MHz, CDCl₃): δ = -63.0.

3-(phenylsulfinyl)pyridine (11)

Step A: The synthesis of this compound was adapted from the literature.^[3] A mixture of 3bromopyridine (960 mg, 6.0 mmol), K_2CO_3 (1.61 g, 12.0 mmol) and thiophenol (650.0 mg, 6.0 mmol) in DMSO (4 mL) was stirred at 110 °C for 72 h in a screw-capped tube. The reaction mixture was allowed to reach room temperature, then CH_2Cl_2 (5 mL) and H_2O (10 mL) were added. The aqueous phase was separated and extracted with CH_2Cl_2 (3 x 5 mL), the combined organic phase was washed with H_2O (3 x 5 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Hexane:EtOAc = 9:1) to give the corresponding sulfide as a brown liquid (520.0 mg, 47%). ¹H- **NMR** (300 MHz, CDCl₃): $\delta = 8.56$ (m, 1H), 8.45 (d, J = 4.4 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.39-7.28 (m, 5H), 7.22-7.18 (m, 1H). ¹³C-NMR (75 MHz, CDCl₃): $\delta = 151.17$, 147.96, 138.00, 134.05, 133.72, 131.86, 129.61, 127.96, 123.99.

Step B: To a solution of 3-phenylthiopyridine (220.0 mg, 1.17 mmol) in CH₂Cl₂ (2 mL) was added *m*-CPBA (279.6 mg, 1.29) slowly at 0 °C and the mixture was stirred at this temperature for 4 h. Then the mixture was warmed to room temperature and stirred overnight. After that, the mixture was quenched with 4 mL of NaHCO₃ (sat. aqueous solution). The aqueous layer was then extracted with CH₂Cl₂ (3×10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Hexane:EtOAc = 9:1) to give the title compound **11** as a white solid. (187.5 mg, 79%). **¹H-NMR** (300 MHz, CDCl₃): δ = 8.78 (d, J = 1.7 Hz, 1H), 8.66 (dd, J = 4.8 Hz, J = 1.6 Hz, 1H), 8.00-7.96 (m, 1H), 7.68-7.64 (m, 2H), 7.51-7.47 (m, 3H), 7.42-7.37 (m, 1H). ¹³C-NMR (75 MHz, CDCl₃): δ = 151.98, 146.47, 144.60, 142.44, 132.44, 131.65, 129.67, 124.69, 124.30.

2-(phenylsulfinyl)naphthalene (1m)

Step A: The synthesis of this compound was adapted from the literature.^[2] To a solution of 2bromonaphthalene (1.13 g, 5.0 mmol) in THF (28 mL) was added *n*-BuLi (2.5 M in hexane, 2.1 mL, 5.25 mmol) at -78 °C. The mixture was stirred for 30 min, then to a solution of phenyl disulfie (1.22 g, 5.0 mmol) in THF (10 mL) was added dropwise. After stirring for 30 min, the mixture was warmed to 0 °C and stirred for 1 h, then warmed to room temperature and stirred for 2.5 h. After that, the mixture was taken to dryness and the crude residue was dissolved in CH₂Cl₂ (20 mL) and washed with brine. The aqueous layer was washed with CH₂Cl₂ (20 mL) and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Hexane) to give the corresponding sulfide as a white solid (270.0 mg, 23%). ¹**H-NMR** (300 MHz, CDCl₃): $\delta = 8.00$ (s, 1H), 7.92-7.81 (m, 3H), 7.59-7.53 (m, 5H), 7.45-7.37 (m, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): $\delta = 136.0$, 133.8, 133.1, 132.3, 131.0, 129.9, 129.3, 128.9, 128.8, 127.8, 127.5, 127.1, 126.6, 126.2.

Step B: To a solution of 2-(phenylthio)naphthalene (270.0 mg, 1.14 mmol) in CH_2Cl_2 (2 mL) was added *m*-CPBA (278.1 mg, 1.26 mmol) slowly at 0 °C and the mixture was stirred at this temperature for 4 h. Then the mixture was warmed to room temperature and stirred overnight. After that, the mixture was quenched with 4 mL of NaHCO₃ (sat. aqueous solution). The aqueous

layer was then extracted with CH_2Cl_2 (3×10 mL). The combined organic phase was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Hexane:EtOAc = 8:2) to give the title compound **1m** as a white solid. (239.3 mg, 83%). ¹H-NMR (300 MHz, CDCl₃): δ = 8.29 (s, 1H), 7.89-7.65 (m, 5H), 7.50-7.33 (m, 6H). ¹³C-NMR (75 MHz, CDCl₃): δ = 145.3, 142.4, 134.2, 132.6, 130.9, 129.6, 129.2, 128.4, 127.9, 127.7, 125.1, 124.8, 124.8, 120.5.

Bis(4-trifluoromethylphenyl) sulfoxide (1n)

Step A: The synthesis of this compound was adapted from the literature.^[2] A mixture of *p*-toluenethiol (2.03 g, 16 mmol), 1-chloro-4-iodobenzene (3.77 g, 16 mmol), *n*-Bu₄NBr (0.53 g, 1.60 mmol) and NaOH (1.30 g, 32 mmol) and CuI (324.6 mg, 1.6 mmol) in toluene (11 mL) was stirred under reflux for 24 h. The reaction mixture was allowed to reach room temperature, then 10 mL of NH₄Cl (sat. aqueous solution) were added. The aqueous phase was separated and extracted with EtOAc (3 x 10 mL), the combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The mixture was recrystalized from ethanol to give the corresponding sulfide as a white solid (1.79 g, 48%). ¹**H-NMR** (300 MHz, CDCl₃): δ = 7.28-7.10 (m, 8H), 2.33 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 138.1, 136.0, 132.5, 132.3, 130.8, 130.6, 130.2, 129.1, 21.3.

Step B: To a solution of (4-chlor-phenyl)(*p*-tolyl) sulfide (1.01 g, 4.06 mmol) in CH₂Cl₂ (15 mL) was added *m*-CPBA (1.05 g, 4.47 mmol) slowly at 0 °C and the mixture was stirred at this temperature for 4 h. Then the mixture was warmed to room temperature and stirred overnight. After that, the mixture was quenched with 10 mL of NaHCO₃ (sat. aqueous solution). The aqueous layer was then extracted with CH₂Cl₂ (3×10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Hexane:EtOAc = 9:1) to give the title compound **1n** as a white solid. (871.2 mg, 86%). **¹H-NMR** (300 MHz, CDCl₃): δ = 7.86-7.80 (m, 4H), 7.64 (d, J = 9.0 Hz, 2H), 7.50 (d, J = 9.0 Hz, 2H), 2.58 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃): δ = 144.2, 141.8, 141.4, 136.5, 129.7, 129.0, 125.5, 124.4, 20.9.

6.2 Synthesis of thioanisole oxide derivatives

The procedure described in the literature was followed.^[4] A mixture of the corresponding sulfide (2.0 mmol) and $H_2O_2 30\%$ (2.0 mmol, 200mL) were vigorously stirred at 70 °C for 1 h. Then the mixture was cooled to room temperature, extracted with CH_2Cl_2 (3×10 mL), the combined organic phase was dried over anhydrous Na₂SO₄ concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the corresponding sulfoxide.

4-(methylsulfinyl)aniline (1t)

The sulfoxide **1t** was prepared following the procedure for thioanisole oxide derivatives described above (CH₂Cl₂ to CH₂Cl₂:Acetone = 9:1) and it was isolated as a brown solid (279.0 mg, 94%). **¹H-NMR** (300 MHz, CDCl₃): δ = 7.43 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 8.7 Hz, 2H), 4.05 (brs, 2H), 2.66 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃): δ = 149.7, 133.4, 125.8, 115.1, 43.9.

4-methanesulfinylbenzonitrile (1u)

The sulfoxide **1u** was prepared following the procedure for thioanisole oxide derivatives described above (Hexane:EtOAc = 2:8) and it was isolated as a white solid (265.1 mg, 78%). ¹H-**NMR** (300 MHz, CDCl₃): δ = 7.68 (q, J = 7.9 Hz, 4H), 2.64 (s, 3H). ¹³C-**NMR** (75 MHz, CDCl₃): δ = 151.2, 132.7, 124.1, 117.5, 114.2, 43.4.

4-methylsulfinylbenzaldehyde (1v)

The sulfoxide **1t** was prepared following the procedure for thioanisole oxide derivatives described above (Hexane:EtOAc = 3:7) and it was isolated as a white solid (268.0 mg, 66%). ¹H-NMR (300 MHz, CDCl₃): δ = 9.84 (s, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 2.57 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃): δ = 149.7, 133.4, 125.8, 115.1, 43.9.

7. Characterization data of isolated compounds

Diphenyl sulfide (2a). According to general procedure B, the desired product (2a, 52.4 mg, 95%) was isolated as a pale-yellow liquid (Pentane). ¹H-NMR (300 MHz, CD₂Cl₂): $\delta = 7.37-7.24$ (m, 10H). ¹³C-NMR (75 MHz, CD₂Cl₂): $\delta = 136.4$, 131.6, 129.8, 127.7. HRMS (ESI-TOF) *m*/*z* [M-H]⁺ Calc. for C₁₂H₁₁S: 187.0582. Found: 187.0587. Elemental analysis Calc. (%) for C₁₂H₁₀S: C 77.38, H 5.41, S 17.21. Found: C 76.96, H 5.02, S 17.12.

Bis(4-methylphenyl) sulfide (2b). According to general procedure B, the desired product (**2b**, 51.2 mg, 80%) was isolated as a white solid (Pentane). ¹**H-NMR** (300 MHz, CD₂Cl₂): $\delta = 7.25$ (d, J = 12.0 Hz, 4H),

7.13 (d, J = 12.0 Hz, 4fH), 2.34 (s, 6H). ¹³C-NMR (75 MHz, CD_2Cl_2): δ = 137.7, 133.2, 131.6, 130.5, 21.4. HRMS (ESI-TOF) *m*/*z* [M-H]⁺ Calc. for $C_{14}H_{15}S$: 215.0894. Found: 215.0816. Elemental analysis Calc. (%) for $C_{14}H_{14}S$: C 78.45, H 6.58, S 14.96. Found: C 78.34, H 6.34, S 14.70.

Bis(4-methoxyphenyl) sulfide (2c). According to general procedure B, the desired product (**2c**, 76.7 mg, 98%) was isolated as a white solid (Pentane:EtOAc = 9:1). ¹**H-NMR** (300

MHz, CD_2Cl_2): $\delta = 7.32$ (d, J = 9.0 Hz, 4H), 6.87 (d, J = 9.0 Hz, 4H), 3.79 (s, 6H). ¹³C-NMR (75 MHz, CD_2Cl_2): $\delta = 159.7$, 133.3, 128.0, 115.3, 55.9. HRMS (ESI-TOF) *m/z* [M-H]⁺ Calc. for $C_{14}H_{15}SO_2$: 247.0793. Found: 247.0795. Elemental analysis Calc. (%) for $C_{14}H_{14}SO_2$: C 68.26, H 5.73, S 13.02. Found: C 68.75, H 5.81, S 13.22.

Bis(4-(trifluoromethyl)phenyl)sulfide (2d). According to general procedure B, the desired product (2d, 89.3 mg, 93%) was isolated as a white solid (Pentane). ¹H-NMR (300 MHz, CD_2Cl_2):

δ = 7.61 (d, J = 9.0 Hz, 4H), 6.48 (d, J = 9.0 Hz, 4H). ¹³C-NMR (75 MHz, CD₂Cl₂): δ = 140.3, 131.7, 129.6 (q, J = 37.5 Hz), 126.9 (q, J = 3.8 Hz), 124.7 (q, J = 270.0 Hz). ¹⁹F-NMR (282 MHz, CD₂Cl₂): δ = -63.0. HRMS (ESI-TOF) *m*/*z* [M-H]⁺ Calc. for C₁₄H₉SF₆: 323.0329. Found: 323.0318. Elemental analysis Calc. (%) for C₁₄H₈SF₆: C 52.18, H 2.50, S 9.95. Found: C 52.18, H 2.71, S 10.09.

S S

Thianthrene (2e). According to general procedure B, the desired product (**2e**, 46.6 mg, 75%) was isolated as a white solid (Pentane). ¹**H-NMR** (300 MHz, CD_2Cl_2): $\delta = 7.52-7.46$ (m, 4H), 7.29-7.23 (m, 4H). ¹³**C-NMR** (75

MHz, CD_2Cl_2): $\delta = 136.1$, 129.2, 128.3. **HRMS (ESI-TOF)** m/z [M-H]⁺ Calc. for $C_{12}H_9S_2$: 217.0146. Found: 217.0141. **Elemental analysis** Calc. (%) for $C_{12}H_8S_2$: C 66.63, H 3.73, S 29.65. Found: C 67.00, H 3.79, S 29.54.

Bis(4-methoxyphenyl) sulfide (2f). According to general procedure B, the desired product (**2f**, 56.6 mg, 90%) was isolated as a white solid (Pentane). ¹**H-NMR** (300 MHz, CD₂Cl₂): $\delta = 7.38-7.24$ (m, 10H), 3.65 (s, 4H). ¹³**C-NMR** (75 MHz, CD₂Cl₂): $\delta = 139.0$, 129.5, 129.0, 127.5, 36.3. **HRMS (ESI-TOF)** *m/z* [M-H]⁺ Calc. for C₁₄H₁₅S: 215.0894. Found: 215.0889. **Elemental analysis** Calc. (%) for C₁₄H₁₄S: C 78.45, H 6.58, S 14.96. Found: C 77.23, H 6.54, S 14.45.

S Diethyl sulfide (2h). According to general procedure B, the desired product (2h, 27.2 mg, 94%) was isolated as a colorless liquid (Pentane). ¹H-NMR (300 MHz, CD₂Cl₂): $\delta = 2.53$ (q, J = 7.4 Hz, 4H), 1.22 (t, J = 7.4 Hz, 6H). ¹³C-NMR (75 MHz, CD₂Cl₂): $\delta = 25.9$, 15.7. HRMS (ESI-TOF) *m*/*z* [M-H]⁺ Calc. for C₄H₁₁S: 91.0581. Found: 91.0579. Elemental analysis Calc. (%) for C₄H₁₀S: C 53.27, H 11.18, S 35.55. Found: C 54.12, H 11.13, S 36.75.

Dibuthyl sulfide (2i). According to general procedure B, the desired product (**2i**, 44.9 mg, 98%) was isolated as a colorless liquid (Pentane). ¹H-NMR (300 MHz, CD₂Cl₂): $\delta = 2.49$ (t, J = 7.3 Hz, 4H), 1.55 (m, 4H), 1.40 (m, 4H), 0.91 (t, J = 7.3 Hz, 6H). ¹³C-NMR (75 MHz, CD₂Cl₂): $\delta = 32.5$, 32.3, 22.6, 14.1. HRMS (ESI-TOF) *m*/*z* [M-H]⁺ Calc. for C₈H₁₉S: 147.1207. Found: 147.1212. Elemental analysis Calc. (%) for C₈H₁₈S: C 65.68, H 12.40, S 21.92. Found: C 67.38, H 11.35, S 20.77.

S Tetrahydrothiophene (2j). According to general procedure B, the desired product (2j, 25.6 mg, 96%) was isolated as a colorless liquid (Pentane). ¹H-NMR (300 MHz, CD_2Cl_2): $\delta = 2.79$ (m, 4H), 1.91 (m, 4H). ¹³C-NMR (75 MHz, CD_2Cl_2): $\delta = 32.2$, 31.6. HRMS (ESI-TOF) m/z [M-H]⁺ Calc. for C₄H₉S: 89.0425. Found: 89.0264. Elemental analysis Calc. (%) for C₄H₈S: C 54.49, H 9.15, S 36.37. Found: C 55.47, H 9.73, S 35.98.

S Bis(methylthio)methane (2k). According to general procedure B, the desired product (2k, 37.2 mg, 92%) was isolated as a colorless liquid (Pentane). ¹H-NMR (300 MHz, CD₂Cl₂): $\delta = 3.63$ (s, 2H), 2.14 (s, 6H). ¹³C-NMR (75 MHz, CD₂Cl₂): $\delta = 40.6$, 14.7. HRMS (ESI-TOF) m/z [M-H]⁺ Calc. for C₃H₉S₂: 109.0146. Found: 109.0142. Elemental analysis Calc. (%) for C₃H₈S₂: C 33.29, H 1.01, S 59.25. Found: C 32.98, H 1.24, S 59.07.

2-(phenylthio)naphthalene (2l). According to general procedure B, the desired product (**2l**, 66.3 mg, 92%) was isolated as a white solid (Pentane). ¹**H-NMR** (300 MHz, CD₂Cl₂): $\delta = 7.88-7.75$ (m, 4H), 7.54-7.27 (m, 8H). ¹³**C-NMR** (75 MHz, CD₂Cl₂): $\delta = 136.3$, 134.4, 133.7, 132.9, 131.6, 130.3, 129.8, 129.4, 129.2, 128.3, 127.9, 127.7, 127.2, 126.8. **HRMS (ESI-TOF)** *m/z* [M-H]⁺ Calc. for C₁₆H₁₃S: 237.0738. Found: 237.0745. **Elemental analysis** Calc. (%) for C₁₆H₁₂S: C 82.05, H 4.94, S 13.53. Found: C 81.31, H 5.12, S 13.57.

(4-chlor-phenyl)(*p*-tolyl) sulfide (2m). According to general procedure B, the desired product (2m, 68.7 mg, 97%) was isolated as a white solid (Pentane). ¹H-NMR (300 MHz, CD₂Cl₂): $\delta = 7.33-7.17$

(m, 8H), 2.36 (s, 3H). ¹³C-NMR (75 MHz, CD_2Cl_2): $\delta = 138.9$, 136.7, 133.1, 132.8, 131.4, 131.2, 130.8, 129.7, 21.4. HRMS (ESI-TOF) m/z [M-H]⁺ Calc. for $C_{13}H_{12}SCl$: 235.0348. Found:

235.0341. **Elemental analysis** Calc. (%) for C₁₃H₁₁SCl: C 66.52, H 4.72, S 13.66. Found: C 67.11, H 4.67, S 13.61.

3-phenylthiopyridine (2n). According to general procedure B, the desired product (**2n**, 32.3 mg, 55%) was isolated as a yellow oil (Pentane:EtOAc = 9:1). ¹**H-NMR** (300 MHz, CD₂Cl₂): δ = 8.54 (m, 1H), 8.45 (d, J = 6.0 Hz,

1H), 7.62 (d, J = 9.0 Hz, 1H), 7.41-7.30 (m, 5H), 7.25-7.20 (m, 1H). ¹³C-NMR (75 MHz, CD₂Cl₂): $\delta = 151.72, 148.52, 138.54, 134.75, 133.91, 132.14, 130.02, 128.32, 124.44.$ HRMS (ESI-TOF) *m/z* [M-H]⁺ Calc. for C₁₁H₁₀SN: 188.0534. Found: 188.0534. Elemental analysis Calc. (%) for C₁₁H₂SN: C 70.55, H 4.84, S 17.12, N 7.48. Found: C 71.42, H 4.61, S 16.99, N 7.29

S Thioanisole (20). According to general procedure B, the desired product (20, 42.1 mg, 96%) was isolated as a pale-yellow liquid (Pentane). ¹H-NMR (300 MHz, CD₂Cl₂): δ = 7.33-7.27 (m, 4H), 7.18-7.14 (m, 1H), 2.49 (s, 3H). ¹³C-NMR (75 MHz, CD₂Cl₂): δ = 139.2, 129.4, 127.0, 125.5, 16.1. HRMS (ESI-TOF) *m/z* [M-H]⁺ Calc. for C₇H₉S: 125.0425. Found: 125.0442. Elemental analysis Calc. (%) for C₇H₈S: C 67.69, H 6.49, S 25.82. Found: C 67.31, H 6.54, S 24.79.

S S

4-methylthioanisole (2p). According to general procedure B, the desired product (**2p**, 42.3 mg, 98%) was isolated as a yellow liquid (Pentane). ¹**H-NMR** (300 MHz, CD₂Cl₂): δ = 7.18 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 2.46

(s, 3H), 2.32 (s, 3H). ¹³C-NMR (75 MHz, CD_2Cl_2): $\delta = 135.6$, 135.4, 130.1, 127.6, 21.2, 16.7. HRMS (ESI-TOF) m/z [M-H]⁺ Calc. for $C_8H_{11}S$: 139.0582. Found: 139.0581. Elemental analysis Calc. (%) for $C_7H_{10}S$: C 66.61, H 7.99, S 25.40. Found: C 66.39, H 7.63, S 26.01.

4-bromothioanisole (2q). According to general procedure B, the desired product (**2q**, 55.2 mg, 83%) was isolated as a white solid (Pentane). ¹**H-NMR** (300 MHz, CD_2Cl_2): $\delta = 7.41$ (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H),

2.46 (s, 3H). ¹³C-NMR (75 MHz, CD₂Cl₂): δ = 135.6, 132.3, 128.5, 118.4, 16.1. HRMS (ESI-TOF) *m/z* [M-H]⁺ Calc. for C₇H₈SBr: 204.9530. Found: 204.9522. Elemental analysis Calc. (%) for C₇H₇SBr: C 41.40, H 3.47, S 15.79. Found: C 41.85, H 3.10, S 15.51.

4-(methylthio)aniline (2r). According to general procedure B, the desired product (**2r**, 38.5 mg, 95%) was isolated as a brown oil (Pentane:EtOAc = 4:1). ¹**H-NMR** (300 MHz, CD₂Cl₂): δ = 7.16 (d, J = 6.5 Hz, 2H), 6.63 (d, J =

6.5 Hz, 2H), 3.72 (brs, 2H), 2.40 (s, 3H). ¹³C-NMR (75 MHz, CD_2Cl_2): $\delta = 146.0, 131.4, 126.0, 116.0, 19.0$ HRMS (ESI-TOF) m/z [M-H]⁺ Calc. for $C_7H_{10}SN$: 139.0582. Found: 139.0581. Elemental analysis Calc. (%) for C_7H_9SN : C 60.39, H 6.52, S 23.03, N 10.06. Found: C 61.08, H 5.84, S 23.03, N 10.15.

4-cyanothioanisole (2s). According to general procedure B, the desired product (**2s**, 40.4 mg, 89%) was isolated as white solid (Pentane:EtOAc = 9:1). ¹**H-NMR** (300 MHz, CD₂Cl₂): δ = 7.53(d, J = 8.8 Hz, 2H), 7.27 (d, J =

8.7 Hz, 2H), 2.50 (s, 3H). ¹³C-NMR (75 MHz, CD₂Cl₂): δ = 146.7, 132.6, 125.9, 119.4, 108.1, 15.0. HRMS (ESI-TOF) *m/z* [M-H]⁺ Calc. for C₈H₈SN: 150.0378. Found: 150.0377. Elemental analysis Calc. (%) for C₈H₇SN: C 64.40, H 4.73, S 21.49, N 9.39. Found: C 63.99, H 4.65, S 21.09, N 9.35.

4-(methylthio)benzaldehyde (2t). According to general procedure B, the desired product (**2t**, 43.1 mg, 95%) was isolated as yellow liquid (Pentane:EtOAc = 9:1). ¹**H-NMR** (300 MHz, CD₂Cl₂): δ = 9.90 (s, 1H), 7.75 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 2.53 (s, 3H). ¹³**C-NMR** (75 MHz, CD₂Cl₂): δ = 191.5, 148.4, 135.6, 130.3, 125.6, 15.0. **HRMS (ESI-TOF)** *m/z* [M-H]⁺ Calc. for C₈H₉SO: 153.0374. Found: 153.0374. **Elemental analysis** Calc. (%) for C₈H₈SO: C 63.13, H 5.30, S 21.07. Found: C 62.87, H 5.27, S 20.89.

Phenyl vinyl sulfide (2w). According to general procedure B, the desired product (2w, 18.4 mg, 49%) was isolated as an orange oil (Pentane). ¹H-NMR (300 MHz, CD₂Cl₂): δ = 7.41-7.25 (m, 5H), 6.58 (dd, J = 9.6 Hz, J = 16.6 Hz,

1H), 5.39 (d, J = 3.6 Hz, 1H), 5.34 (d, J = 10.7 Hz, 1H). ¹³C-NMR (75 MHz, CD₂Cl₂): δ = 134.9, 132.4, 130.9, 129.7, 127.7, 115.9. **HRMS (ESI-TOF)** *m*/*z* [M-H]⁺ Calc. for C₈H₉S: 137.0425. Found: 137.0422. **Elemental analysis** Calc. (%) for C₈H₈S: C 70.54, H 5.92, S 23.54. Found: C 71.15, H 5.22, S 23.68.

8. ¹H and ¹³C NMR spectra of isolated compounds

JM1159.11.fid

9. Mechanistic experiments

Figure S3. HRMS (ESI-TOF) spectra of catalyst 5^+ after diphenyl sulfoxide hydrogenation in the presence of CuCl. Spectrum registered at 20 V in CH₃CN.

Figure S4. HRMS (ESI-TOF) spectra of catalyst 5^+ after diphenyl sulfoxide hydrogenation in the presence of Et₃N. Spectrum registered at 20 V in CH₃CN.

10. Computational details

Density functional theory (DFT) calculations were performed with Gaussian 09 (Revision D.01) and Gaussian 16 (Revision C.02).^[5,6] Geometry optimizations were carried out at the BP86/BS1 level (using Gaussian 09),^[7,8] or PBE0-D3/BS1 level (using Gaussian 16),^[9] where Mo and S atoms were described using the SDD relativistic ECP and associated basis set,^[10] added polarization functions for the latter ($\zeta = 0.503$),^[11] and the remaining atoms were described with the 6-31G(d,p) basis set (BS1).^[12,13] Solvent effects (acetonitrile, $\varepsilon = 35.688$) were included self-consistently in these optimizations through the PCM method.^[14,15] All stationary points were characterized at this level of theory by analytical frequency calculations as either minima (all positive eigenvalues) or transition states (one imaginary eigenvalue). Then, intrinsic reaction coordinate (IRC) calculations and subsequent geometry optimizations were also used to obtain the minima linked by each transition state. The frequency calculations were also used to obtain the

thermochemistry corrections (zero-point, thermal, and entropic energies) at the experimental temperature (323.15 K) and at the standard 1 atm pressure, on the basis of the IGRRHO (ideal gas/rigid rotor/harmonic oscillator) approach. However, these pressures and temperatures employed do not correspond to the 1 M concentration of the standard state used for species reacting in solution. Therefore, corrections (2.1042 kcal·mol⁻¹) were applied to all Gibbs values to change the standard state to 1 M at 323.15 K. This correction has been calculated using the formula RTln(Vm) = 2.1042 kcal·mol⁻¹, where Vm = 26.5 L·mol⁻¹ and corresponds to the molar volume of an ideal gas at 1 atm and 323.15 K.

In addition, single-point dispersion corrections were computed using Grimme's D3 (zero damping) parameter set when BP86/BS1 level was used.^[16] Thus, the Gibbs energies in acetonitrile (G_{solv}) shown in the text were obtained adding to the potential energies in acetonitrile calculated at BP86/BS1, the Gibbs contribution at the BP86/BS1 level, the dispersion correction, and the standard state correction. When PBE0-D3/BS1 level was employed, Grimme's D3 (zero damping) dispersion corrections were implemented during the optimizations. Finally, the three-dimensional (3D) structures shown in the text were depicted using VESTA software.^[17]

10.1 Absolute energy of computed species

Table S5. Electronic energies (E) computed with BP86/BS1(PCM) including solvent effects, correction to Gibbs Free energies (G corr.) at the same level of theory and Grimme's D3 dispersion correction (single-point calculations). Gibbs Free energies (G_{solv}) obtained as the sum of the three previous columns. All values are given in Hartrees.

Species	E _{solv} (PCM)	G _{corr} (PCM)	D3 _{corr} (0)	G _{solv} (PCM,D3)
	R	eagents and produ	cts	
1a	-548.6975	0.1352	-0.0242	-548.5866
2a	-473.5165	0.1356	-0.0207	-473.4015
H_2	-1.1766	-0.0029	0.0000	-1.1794
H ₂ O	-76.4246	0.0006	0.0000	-76.4241
	Cluster	species and transit	ion states	
5+	-2434.5020	0.4435	-0.1576	-2434.5370
TS1	-2435.6523	0.4555	-0.1631	-2435.6830
I1	-2435.6596	0.4589	-0.1641	-2435.6870
RC1	-2984.3638	0.6126	-0.2009	-2983.9521
TS2	-2984.3621	0.6116	-0.2030	-2983.9535
I2	-2984.3670	0.6141	-0.2008	-2983.9537
TS3	-2984.3662	0.6152	-0.2025	-2983.9535

Species	E _{solv} (PCM,D3)	G _{corr} (PCM,D3)	G _{solv} (PCM,D3)
	Reagents a	and products	
1 a	-548.0678	0.1431	-547.9247
2a	-472.9677	0.1400	-472.8276
H_2	-1.1672	-0.0026	-1.1698
H ₂ O	-76.3428	0.0015	-76.3413
	Cluster species a	nd transition states	5
5+	-2432.6212	0.4691	-2432.1521
TS1	-2433.76573	0.4814	-2433.2843
I1	-2433.7808	0.4852	-2433.2956
RC1	-2981.8744	0.6505	-2981.2239
TS2	-2981.8688	0.6480	-2981.2208
I2	-2981.8726	0.6526	-2981.2200
TS3	-2981.8588	0.6498	-2981.2090

Table S6. Electronic energies (E) computed with PBE0-D3/BS1(PCM) including solvent effects, correction to Gibbs Free energies (G corr.) at the same level of theory. Gibbs Free energies (G_{solv}) correspond to the sum of the two previous columns. All values are given in Hartrees.

Table S7. Gibs Free and potential energy values calculated with different functionals. All values are given in kcal·mol⁻¹.

	∆G (kcal·mol ⁻¹)		ΔE (kcal	·mol ⁻¹)
Stationary Point	PBE0-D3 ^[a]	BP86	PBE0-D3	BP86
TS1	21.5	20.3	14.2	16.5
I1	14.4	17.1	4.7	12.0
RC1	10.0	14.6	-11.4	7.7
TS2	12.0	13.8	-7.9	8.8
I2	12.5	13.7	-10.3	5.7
TS3	19.4	13.8	-1.7	6.2
Products	-46.7	-37.4	-47.4	-42.0

^[a]Values used in the main text

10.2 Analysis of electronic properties of the system

Table S8. Energies of the **I1** and **I2** intermediates in different electronic spin states. Electronic energies (E) computed with PBE0-D3/BS1(PCM), correction to Gibbs Free energies (G corr.) at

Electronic configuration	E _{solv} (PCM,D3)	G _{corr} (PCM,D3)	G _{solv} (PCM,D3)		
	Speci	es: TS1			
Singlet	-2433.7657	0.4814	-2433.2843		
Triplet	-2433.7353	0.4771	-2433.2582		
	Species: I1				
Singlet	-2433.7808	0.4852	-2433.2956		
Triplet	-2433.7754	0.4831	-2433.2923		
Species: I2					
Singlet	-2981.8726	0.6526	-2981.2200		
Triplet	-2981.8739	0.6592	-2981.2147		

the same level of theory. Gibbs Free energies (G_{solv}) correspond to the sum of the two previous columns. All values are given in Hartrees.

10.3 Hydrogen transfer analysis

Table S9. Study of the charge distribution by an analysis of the Mulliken charges for **I1** and **I2** at the PBE0-D3/BS1(PCM) theory level. Highlighted hydrogen atoms (in red) are the corresponding to the hydrogenation process.

I1			I2
Atom	Atomic charge	Atom	Atomic charge
Mo 1	0.01	Mo 1	-0.11
Mo 2	-0.12	Mo 2	0.01
S 3	0.15	S 3	0.10
Mo 4	-0.08	Mo 4	-0.04
Cl 5	-0.34	Cl 5	-0.40
N 6	-0.58	N 6	-0.59
C 7	-0.14	C 7	-0.14
C 8	-0.14	C 8	-0.14
N 9	-0.61	N 9	-0.59
C 10	-0.26	C 10	-0.26
C 11	-0.26	C 11	-0.25
Cl 12	-0.35	Cl 12	-0.41
S 13	-0.11	S 13	-0.11
N 14	-0.58	N 14	-0.58
C 15	-0.26	C 15	-0.26
N 16	-0.60	N 16	-0.59
C 17	-0.26	C 17	-0.26
C 18	-0.14	C 18	-0.14
C 19	-0.14	C 19	-0.14
N 20	-0.59	N 20	-0.58
C 21	-0.14	C 21	-0.14

C 22	0.14	C 22	0.14
U 22 N 23	-0.14	N 23	-0.14
C 24	-0.39	Γ 24	-0.39
Cl 24	-0.20	C125	-0.20
C 26	-0.37	C 26	-0.38
С 20 Н 27	-0.27		-0.23
Н 27	0.37	П 27	0.37
П 28 Н 20	0.37	Н 20	0.38
П 29	0.37		0.37
П 30 Н 31	0.37		0.37
11 31 Ц 22	0.37		0.37
П 32	0.38		0.37
П 33	0.20		0.19
П 34 Ц 25	0.17		0.10
П 33	0.19		0.19
П 30	0.20		0.20
П 37	0.19		0.18
H 38	0.21		0.20
П 39	0.19		0.18
H 40	0.20		0.19
П 41 Ц 42	0.16		0.10
H 42	0.20		0.19
П 43	0.20		0.19
Н 44 Ц 45	0.17		0.17
H 43	0.19		0.18
H 40	0.19		0.18
П 47 Ц 49	0.20		0.20
H 48	0.19		0.18
П 49	0.21		0.20
Н 30 Н 51	0.20		0.20
П 31 Ц 52	0.10		0.10
П 32	0.20		0.19
П 55	0.17		0.19
н 55	0.17	H 55	0.10
Н 55	0.20	Н 55	0.18
H 57	0.10	Н 50	0.20
н 59 н 59	0.19	П 57	0.18
н 50 Н 50	0.19	Н 50	0.20
H 60	0.19	H 60	0.18
H 61	0.20	H 61	0.15
H 62	0.17	Н 62	0.19
S 63	-0.03	S 63	-0.35
H 64	0.03 0 13	S 64	-0.20
S 65	-0.04	C 65	-0.12
H 66	-0.0 1	C 66	-0.12
11 00	0.10		_0.11
		C 68	-0.11
			0.13
		C 70	0.20
			-0.13

H 71	0.20
C 72	-0.11
Н 73	0.18
Н 74	0.18
Н 75	0.18
C 76	-0.09
C 77	-0.12
C 78	-0.11
C 79	-0.13
H 80	0.19
C 81	-0.14
H 82	0.19
C 83	-0.12
H 84	0.18
H 85	0.18
H 86	0.17
S 87	0.59
O 88	-0.50
H 89	0.37
H 90	0.12

Procedure: Fragment analysis was performed by treating the organic and inorganic components of **I2** separately. The energies associated with the three possible hydrogen transfer pathways (proton transfer, hydride transfer and hydrogen atom transfer) were obtained as the sum of the energies of the organic and inorganic fragments (see Table S10). These energies were determined using single-point calculations, modifying the charge and multiplicity of the fragments according to each transfer possibility. Thus, the closest energy value to the optimized result (**I2** = 12.5 kcal·mol⁻¹) suggests which transfer pathway is involved in the process.

Table S10. Study of the character of the transferred hydrogen atom to the sulfoxide substrate in intermediate **I2**. Electronic energies (E) computed with single-point PBE0-D3/BS1(PCM) calculations on the optimized **I2** geometry of the corresponding fragment, correction to Gibbs Free energies (G corr.) at the same level of theory. Gibbs Free energies obtained as the sum of the two previous columns. All values are given in Hartrees

Fragment	E _{solv} (PCM,D3)	G _{corr} (PCM,D3)	G _{solv} (PCM,D3)	
	Proton	transfer		
Inorganic	-2433.3408	0.4748	-2432.8659	
Organic	-548.4956	0.1556	-548.3400	
Total	-2981.8364	0.6304	-2981.2059	
Hydride transfer				
Inorganic	-2432.9795	0.4755	-2432.5040	
Organic	-548.6356	0.1512	-548.4845	

Total	-2981.6151	0.6272	-2980.9885
	Hydrogen atom	transfer (HAT)	
Inorganic	-2433.1897	0.4753	-2432.7144
Organic	-548.5930	0.1531	-548.4399
Total	-2981.7827	0.6284	-2982.1543

10.4 3D views of the cluster units

Figure S5. Optimized structures of intermediates and transition states for the Gibbs energy profile represented in Figure 5. Selected distances are given in Å.

10.5 Cartesian coordinates of the optimized structures

10.5.1 Optimized with BP86 functional

Stationary point: H₂

	Х	у	Z
Н	0.1433	2.5505	-0.0642
Н	-0.6076	2.5505	-0.0642

Stationary point: H₂O

	Х	у	Z
0	-1.5137	2.5201	-0.0642
Н	-0.5409	2.5795	-0.0642
Н	-1.7824	3.4568	-0.0642

	Х	у	Z
С	-5.4007	1.9985	1.2796
С	-4.2912	1.7537	0.4520
С	-3.2027	2.6370	0.5105
С	-3.2028	3.7639	1.3421
С	-4.3187	3.9993	2.1615
С	-5.4132	3.1162	2.1328
Н	-6.2590	1.3197	1.2494
Н	-4.2822	0.8921	-0.2244
Н	-2.3390	4.4370	1.3224
Н	-4.3354	4.8738	2.8202
Н	-6.2830	3.3048	2.7699
S	-1.7439	2.3826	-0.5978
0	-0.9693	3.7249	-0.5828
С	-0.7990	1.2479	0.5165
С	-1.0330	-0.1349	0.4706
С	0.1855	1.8085	1.3400
С	-0.2717	-0.9736	1.3028
Н	-1.7902	-0.5570	-0.1991
С	0.9419	0.9593	2.1641
Н	0.3469	2.8913	1.3119
С	0.7111	-0.4281	2.1478
Н	-0.4414	-2.0548	1.2825
Н	1.7137	1.3805	2.8166
Н	1.3050	-1.0876	2.7885

Stationary point: Diphenyl sulfoxide (1a)

Stationary point: Diphenyl sulfide (2a)

C	-4.9927	1.9597	0.2844
С	-3.5955	2.0727	0.3429
С	-3.0078	3.0388	1.1861
C	-3.8229	3.8963	1.9524
С	-5.2215	3.7913	1.8664
С	-5.8099	2.8205	1.0394
Н	-5.4442	1.2035	-0.3662
Н	-2.9611	1.4135	-0.2569
Н	-3.3639	4.6349	2.6174
Н	-5.8494	4.4612	2.4628
Н	-6.8995	2.7327	0.9835
S	-1.2204	3.2955	1.2474
C	-0.5518	1.6194	1.3382
C	-1.1099	0.6341	2.1790
C	0.6136	1.3362	0.5970
C	-0.5096	-0.6314	2.2603
Н	-2.0099	0.8575	2.7597
C	1.2204	0.0736	0.7054
Н	1.0380	2.0974	-0.0657
С	0.6589	-0.9148	1.5303
Н	-0.9512	-1.3949	2.9091
Н	2.1258	-0.1395	0.1278
Н	1.1270	-1.9015	1.6036

Stationary point: Cluster 5⁺

	X	у	Z
S	-0.1981	-2.0645	-0.1981
Mo	-1.3812	-0.4173	0.9655
S	0.3388	1.1371	1.1042
Mo	-0.9242	1.7297	-0.7705
S	-2.9345	0.4677	-0.6011
Mo	-1.3479	-0.8348	-1.8024
Cl	-2.5618	-0.1931	-3.9256
N	0.5197	3.4924	-1.1184
С	0.2565	4.0870	-2.4657
С	-1.2413	4.2302	-2.6889
N	-1.9391	2.9200	-2.4993
С	-3.4182	3.1181	-2.5194
С	1.9843	3.3405	-0.8859
Cl	-2.0509	3.5502	0.5826
S	0.3806	0.6391	-2.3525
N	-0.4590	-2.3540	-3.2939
С	1.0156	-2.5181	-3.4383
N	-2.9476	-2.5395	-1.8593
С	-4.4043	-2.2161	-1.8705
С	-1.1208	-3.6814	-3.1008

C	-2.6236	-3.4976	-2.9621
N	-0.5015	-1.2292	2.9392
С	-0.7833	-0.2556	4.0390
С	-2.2268	0.2148	3.9568
N	-2.5246	0.7898	2.6081
С	-3.9867	1.0568	2.4750
Cl	-3.1284	-2.1355	1.5999
С	0.9073	-1.7110	3.0084
Н	-0.8180	-1.9569	-4.1770
Н	-2.7611	-3.0026	-0.9548
Н	-1.1190	-2.0446	3.0840
Н	-2.0540	1.7063	2.5266
Н	0.1567	4.1529	-0.4122
Н	-1.7178	2.3082	-3.3020
Н	1.4648	-1.5541	-3.7133
Н	1.2430	-3.2644	-4.2196
Н	1.4405	-2.8530	-2.4804
Н	-0.6871	-4.1411	-2.1967
Н	-0.9017	-4.3454	-3.9571
Н	-3.0453	-3.0753	-3.8896
Н	-3.1127	-4.4712	-2.7788
Н	-4.6616	-1.6894	-0.9418
Н	-4.9988	-3.1444	-1.9386
Н	-4.6204	-1.5735	-2.7362
Н	1.0569	-2.5067	2.2660
Н	1.1295	-2.1022	4.0167
Н	1.5889	-0.8771	2.7838
Н	-0.5948	-0.7245	5.0223
Н	-0.0822	0.5883	3.9249
Н	-2.4326	0.9615	4.7446
Н	-2.9163	-0.6334	4.1038
Н	-4.1583	1.6739	1.5829
Н	-4.3564	1.5953	3.3655
Н	-4.5162	0.0983	2.3743
Н	2.1575	3.0145	0.1488
Н	2.5020	4.3000	-1.0604
Н	2.3850	2.5807	-1.5730
Н	0.7106	3.4201	-3.2183
Н	0.7448	5.0753	-2.5494
Н	-1.6733	4.9329	-1.9566
Н	-1.4410	4.6270	-3.7004
Н	-3.9093	2.1395	-2.6042
Н	-3.7052	3.7453	-3.3818
Н	-3.7242	3.6091	-1.5845

	X	у	Z
Мо	-1.4185	-0.4307	0.9462
Мо	-0.9366	1.6957	-0.7986
S	-2.9804	0.4810	-0.5948
Mo	-1.3630	-0.7798	-1.8072
Cl	-2.5437	-0.1344	-3.9241
N	0.5274	3.4574	-1.1502
С	0.2555	4.0452	-2.4965
С	-1.2434	4.2044	-2.6914
N	-1.9530	2.9029	-2.4781
С	-3.4285	3.1283	-2.4554
С	1.9930	3.3164	-0.9215
Cl	-1.9391	3.4968	0.6771
S	0.4740	0.5897	-2.2872
N	-0.4658	-2.3167	-3.3013
С	1.0041	-2.4664	-3.4910
N	-2.9331	-2.5098	-1.8267
С	-4.3930	-2.1997	-1.8529
С	-1.0999	-3.6483	-3.0603
С	-2.6032	-3.4869	-2.9103
N	-0.5490	-1.2362	2.9451
C	-0.8078	-0.2320	4.0206
C	-2.2486	0.2412	3.9364
N	-2.5529	0.7849	2.5768
С	-4.0221	1.0161	2.4471
Cl	-3.0915	-2.2334	1.5392
С	0.8405	-1.7648	3.0425
Н	-0.8559	-1.9421	-4.1810
Н	-2.7548	-2.9535	-0.9087
Н	-1.1935	-2.0290	3.0995
Н	-2.1064	1.7128	2.4780
Н	0.1647	4.1178	-0.4434
Н	-1.7633	2.2845	-3.2863
Н	1.4324	-1.5043	-3.8022
Н	1.2148	-3.2286	-4.2619
Н	1.4658	-2.7758	-2.5414
Н	-0.6485	-4.0723	-2.1470
Н	-0.8779	-4.3362	-3.8970
Н	-3.0391	-3.0922	-3.8440
H	-3.0753	-4.4642	-2.7032
H	-4.6627	-1.6665	-0.9318
H	-4.9801	-3.1331	-1.9182
H	-4.6064	-1.5661	-2.7263
H	0.9721	-2.5838	2.3222
H	1.0368	-2.1407	4.0620
Н	1.5567	-0.9611	2.8142
Н	-0.6129	-0.6755	5.0145

Н	-0.1014	0.6032	3.8774
Н	-2.4511	1.0034	4.7101
Н	-2.9362	-0.6049	4.1061
Н	-4.2130	1.6262	1.5543
Н	-4.4048	1.5460	3.3377
Н	-4.5288	0.0450	2.3475
Н	2.1713	2.9945	0.1139
Н	2.5030	4.2796	-1.0986
Н	2.3984	2.5587	-1.6083
Н	0.6877	3.3659	-3.2509
Н	0.7536	5.0273	-2.5966
Н	-1.6525	4.9163	-1.9542
Н	-1.4621	4.5969	-3.7004
Н	-3.9405	2.1612	-2.5443
Н	-3.7265	3.7782	-3.2969
Н	-3.6992	3.6056	-1.5022
S	0.4531	0.9877	1.0133
Н	1.4158	0.0100	0.1669
S	-0.0367	-1.9501	-0.2021
Н	1.2555	-0.9834	-0.2555

	X	у	Z
Mo	-1.4126	-0.4311	0.9571
Мо	-0.9327	1.6856	-0.7879
S	-2.9791	0.4808	-0.5757
Мо	-1.3581	-0.7716	-1.7885
Cl	-2.5210	-0.0865	-3.9016
Ν	0.5201	3.4602	-1.1690
С	0.2421	4.0118	-2.5281
С	-1.2576	4.1670	-2.7129
N	-1.9653	2.8713	-2.4618
С	-3.4388	3.1057	-2.4214
С	1.9866	3.3445	-0.9358
Cl	-1.9048	3.4800	0.7154
S	0.5253	0.5688	-2.2447
Ν	-0.4756	-2.3014	-3.3096
С	0.9905	-2.4673	-3.5112
Ν	-2.9383	-2.4928	-1.8293
С	-4.3962	-2.1723	-1.8421
С	-1.1249	-3.6297	-3.0942
С	-2.6250	-3.4531	-2.9327
N	-0.5596	-1.2304	2.9703
С	-0.8399	-0.2290	4.0422
С	-2.2802	0.2377	3.9321
Ν	-2.5620	0.7836	2.5679

C	-4.0308	1.0106	2.4221
Cl	-3.0558	-2.2653	1.5125
C	0.8301	-1.7531	3.0913
Н	-0.8641	-1.9043	-4.1799
Н	-2.7610	-2.9560	-0.9202
Н	-1.2023	-2.0266	3.1148
Н	-2.1202	1.7155	2.4812
Н	0.1486	4.1323	-0.4780
Н	-1.7904	2.2352	-3.2614
Н	1.4311	-1.5031	-3.7978
Н	1.1865	-3.2118	-4.3031
Н	1.4539	-2.8103	-2.5738
Н	-0.6739	-4.0794	-2.1932
Н	-0.9165	-4.3020	-3.9470
Н	-3.0611	-3.0356	-3.8565
Н	-3.1078	-4.4286	-2.7423
Н	-4.6577	-1.6530	-0.9110
Н	-4.9907	-3.1001	-1.9208
Н	-4.6093	-1.5222	-2.7034
Н	0.9788	-2.5695	2.3714
Н	1.0094	-2.1314	4.1131
Н	1.5471	-0.9456	2.8797
Н	-0.6607	-0.6727	5.0390
Н	-0.1344	0.6093	3.9132
Н	-2.5011	0.9972	4.7034
Н	-2.9672	-0.6119	4.0867
Н	-4.2138	1.6269	1.5321
Н	-4.4257	1.5326	3.3121
Н	-4.5331	0.0386	2.3096
Н	2.1689	3.0664	0.1116
Н	2.4859	4.3061	-1.1494
Н	2.3996	2.5657	-1.5937
Н	0.6670	3.3102	-3.2662
Н	0.7402	4.9905	-2.6585
Н	-1.6592	4.8969	-1.9892
Н	-1.4875	4.5349	-3.7285
Н	-3.9584	2.1414	-2.4933
Н	-3.7443	3.7485	-3.2658
Н	-3.6935	3.5949	-1.4697
S	0.4811	1.0428	1.0795
Н	1.4820	0.3309	0.4028
S	-0.0432	-2.0403	-0.1822
Н	1.2014	-1.4118	-0.3334

Stationary point: RC1

|--|

Мо	-1.5123	-0.8546	0.9395
Мо	-0.9551	1.7588	0.1898
S	-3.0894	0.7232	0.1062
Мо	-1.7412	-0.1655	-1.6439
Cl	-2.8448	1.4653	-3.2543
N	0.6195	3.4654	0.3362
С	0.3095	4.4975	-0.6966
С	-1.1766	4.8068	-0.6647
N	-1.9853	3.5616	-0.8425
С	-3.4187	3.8634	-0.5538
С	2.0815	3.1877	0.3816
Cl	-1.6322	2.8983	2.3475
S	0.2606	1.2041	-1.8180
N	-1.1789	-1.0768	-3.7132
С	0.2361	-1.3048	-4.1165
N	-3.5480	-1.5040	-2.1555
С	-4.9389	-1.0237	-1.9088
С	-1.9944	-2.3091	-3.9195
С	-3.4404	-2.0221	-3.5554
N	-0.5984	-2.4910	2.3242
С	-0.6410	-2.0104	3.7378
С	-2.0004	-1.4012	4.0356
N	-2.3215	-0.3071	3.0685
С	-3.7396	0.1204	3.2477
Cl	-3.3852	-2.5346	1.0308
C	0.7112	-3.1349	2.0338
Н	-1.5633	-0.3444	-4.3322
Н	-3.3846	-2.2866	-1.4962
Н	-1.3291	-3.2136	2.2207
Н	-1.7444	0.5219	3.2957
Н	0.3495	3.8545	1.2546
Н	-1.9512	3.2782	-1.8380
Н	0.7767	-0.3482	-4.1028
Н	0.2813	-1.7346	-5.1330
Н	0.7100	-1.9978	-3.4058
Н	-1.5689	-3.1006	-3.2795
Н	-1.9310	-2.6448	-4.9715
Н	-3.8525	-1.2414	-4.2180
Н	-4.0587	-2.9296	-3.6754
Н	-5.0848	-0.8784	-0.8308
<u> </u>	-5.6688	-1.7660	-2.2778
H	-5.0826	-0.0686	-2.4355
H	0.6833	-3.5860	1.0329
H	0.9320	-3.9135	2.7856
<u> </u>	1.5041	-2.3731	2.0614
<u> </u>	-0.4431	-2.8459	4.4348
Н	0.1652	-1.2670	3.8605

Н	-2.0313	-1.0207	5.0725
Н	-2.7911	-2.1640	3.9318
Н	-3.9037	1.0569	2.6991
Н	-3.9583	0.2825	4.3187
Н	-4.3998	-0.6644	2.8501
Н	2.3007	2.5199	1.2258
Н	2.6475	4.1285	0.5036
Н	2.3926	2.7012	-0.5550
Н	0.6176	4.0962	-1.6773
Н	0.8916	5.4187	-0.5083
Н	-1.4529	5.2331	0.3152
Н	-1.4358	5.5491	-1.4408
Н	-4.0414	3.0334	-0.9125
Н	-3.7234	4.7935	-1.0665
Н	-3.5468	3.9795	0.5323
S	0.5268	0.3605	1.4853
S	-0.4414	-1.9569	-0.8465
С	5.5735	0.3385	0.8886
С	5.9312	0.7829	-0.3940
С	6.1782	0.8459	2.0492
С	6.9422	1.7484	-0.5128
Н	5.4149	0.3865	-1.2739
С	7.1942	1.8088	1.9139
Н	5.8634	0.5030	3.0405
С	7.5751	2.2560	0.6379
Н	7.2363	2.1063	-1.5045
Н	7.6780	2.2146	2.8077
Н	8.3627	3.0092	0.5377
С	5.1683	-2.4105	0.6083
С	6.0016	-3.0265	1.5560
C	4.9771	-2.9407	-0.6742
C	6.6816	-4.1997	1.1890
Н	6.1236	-2.6053	2.5596
С	5.6625	-4.1162	-1.0254
Н	4.2984	-2.4358	-1.3687
C	6.5134	-4.7420	-0.0979
Н	7.3380	-4.6925	1.9129
Н	5.5276	-4.5437	-2.0240
H	7.0422	-5.6591	-0.3751
S	4.2291	-0.8979	1.0844
0	3.2288	-0.6501	-0.0969
Н	1.5118	-0.1748	0.6276
Н	1.2450	0.3193	-1.3857

x y z

Мо	-1.4131	-0.9925	0.5822
Мо	-0.8611	1.6077	-0.2075
S	-2.9900	0.5616	-0.2972
Мо	-1.6153	-0.3303	-2.0204
Cl	-2.7327	1.2599	-3.6757
N	0.7022	3.3220	-0.0530
С	0.4082	4.3403	-1.1033
С	-1.0797	4.6452	-1.1059
N	-1.8806	3.3963	-1.2845
С	-3.3205	3.6946	-1.0321
С	2.1634	3.0525	0.0249
Cl	-1.6007	2.7968	1.9170
S	0.3898	1.0246	-2.1882
N	-1.0283	-1.2691	-4.0736
С	0.3904	-1.4897	-4.4643
N	-3.4055	-1.7074	-2.5255
С	-4.8043	-1.2446	-2.2962
С	-1.8289	-2.5124	-4.2690
С	-3.2809	-2.2387	-3.9180
N	-0.5328	-2.6089	2.0114
С	-0.5957	-2.1064	3.4157
С	-1.9586	-1.4906	3.6829
N	-2.2653	-0.4152	2.6921
С	-3.6833	0.0183	2.8438
Cl	-3.2968	-2.6842	0.6855
С	0.7725	-3.2725	1.7552
Н	-1.4165	-0.5479	-4.7032
Н	-3.2349	-2.4798	-1.8571
Н	-1.2714	-3.3232	1.9045
Н	-1.6834	0.4142	2.9040
Н	0.4103	3.7194	0.8552
Н	-1.8226	3.0970	-2.2741
H	0.9238	-0.5290	-4.4557
H	0.4483	-1.9305	-5.4757
H	0.8628	-2.1715	-3.7417
H	-1.3986	-3.2903	-3.6154
H	-1.7549	-2.8619	-5.3161
H	-3.6962	-1.4699	-4.5925
H	-3.88/2	-3.1550	-4.0351
H	-4.95/2	-1.0/53	-1.2226
H	-5.5222	-2.0062	-2.0306
H	-4.9000	-0.3045	-2.8439
H	0.7676	-3./140	0./496
	0.9002	-4.0000	2.30/1
H	1.5/48	-2.5228	1.813/
H	-0.4102	-2.9309	4.1296
H	0.2081	-1.3603	3.5373

Н	-2.0039	-1.0921	4.7128
Н	-2.7483	-2.2551	3.5821
Н	-3.8367	0.9458	2.2772
Н	-3.9183	0.1986	3.9087
Н	-4.3398	-0.7716	2.4495
Н	2.3677	2.3948	0.8808
Н	2.7237	3.9972	0.1459
Н	2.4950	2.5546	-0.8987
Н	0.7369	3.9279	-2.0728
Н	0.9830	5.2666	-0.9157
Н	-1.3770	5.0817	-0.1366
Н	-1.3241	5.3787	-1.8954
Н	-3.9298	2.8536	-1.3884
Н	-3.6213	4.6137	-1.5672
Н	-3.4713	3.8281	0.0492
S	0.5883	0.2370	1.1492
S	-0.3232	-2.1172	-1.1743
С	5.4685	0.2112	0.6193
С	6.1203	0.4065	-0.6121
С	5.7502	1.0034	1.7466
С	7.0835	1.4206	-0.7055
Н	5.8826	-0.2224	-1.4753
С	6.7229	2.0118	1.6364
Н	5.2244	0.8342	2.6917
С	7.3849	2.2184	0.4154
Н	7.6032	1.5866	-1.6539
Н	6.9587	2.6335	2.5051
Н	8.1416	3.0047	0.3335
С	4.9481	-2.4996	0.0738
С	5.9528	-3.1572	0.8046
C	4.4915	-2.9682	-1.1652
С	6.5290	-4.3130	0.2540
Н	6.2847	-2.7815	1.7780
С	5.0803	-4.1279	-1.6991
Н	3.6929	-2.4339	-1.6875
C	6.0946	-4.7962	-0.9937
Н	7.3150	-4.8376	0.8055
Н	4.7413	-4.5068	-2.6683
Н	6.5462	-5.7001	-1.4135
S	4.1576	-1.0306	0.8211
0	3.0068	-0.6424	-0.2333
Н	1.8222	-0.3061	0.3817
Н	1.3698	0.1413	-1.7394

X Y Z

Мо	-1.4056	-0.8021	0.9847
Мо	-0.9024	1.7661	0.1299
S	-3.0250	0.7028	0.0904
Мо	-1.6782	-0.1880	-1.6519
Cl	-2.8689	1.3550	-3.3171
N	0.6552	3.4909	0.2447
С	0.3442	4.4928	-0.8159
С	-1.1447	4.7966	-0.8063
N	-1.9465	3.5462	-0.9581
С	-3.3837	3.8431	-0.6938
С	2.1174	3.2288	0.3090
Cl	-1.6452	3.0090	2.2438
S	0.3172	1.1514	-1.8508
N	-1.1261	-1.1555	-3.7010
С	0.2863	-1.3571	-4.1216
N	-3.4568	-1.6194	-2.0855
С	-4.8578	-1.1835	-1.8256
С	-1.9073	-2.4166	-3.8557
С	-3.3557	-2.1666	-3.4722
N	-0.4935	-2.3752	2.4391
С	-0.5319	-1.8345	3.8291
С	-1.8988	-1.2322	4.1088
N	-2.2492	-0.1980	3.0910
С	-3.6727	0.2087	3.2557
Cl	-3.2769	-2.5394	1.1589
С	0.8051	-3.0465	2.1770
H	-1.5438	-0.4512	-4.3309
Н	-3.2505	-2.3768	-1.4113
Н	-1.2366	-3.0892	2.3624
Н	-1.6793	0.6503	3.2568
H	0.3694	3.8971	1.1508
H	-1.8983	3.2307	-1.9427
H	0.8032	-0.3875	-4.1372
H	0.3301	-1.8113	-5.1280
H	0.7868	-2.0203	-3.4003
H	-1.4454	-3.1751	-3.2003
H	-1.8523	-2.7831	-4.8984
H	-3.8020	-1.4157	-4.14/3
	-3.9456	-3.0968	-3.3647
	-4.9825	-0.9970	-0./512
	-3.3/02	-1.9000	-2.1430
	-3.0307	-0.23/3	-2.38/2
	0.7892	-3.4944	1.1/42
H	0.99/9	-3.8293	2.9328
	0.2194	-2.2984	4.5620
	-0.3184	-2.0348	4.3029
Н	0.2624	-1.0/29	5.9100

Н	-1.9272	-0.8014	5.1265
Н	-2.6757	-2.0144	4.0530
Н	-3.8564	1.1152	2.6647
Н	-3.8942	0.4157	4.3189
Н	-4.3182	-0.6063	2.8957
Н	2.3329	2.5831	1.1715
Н	2.6773	4.1765	0.4085
Н	2.4381	2.7174	-0.6115
Н	0.6612	4.0663	-1.7834
Н	0.9193	5.4236	-0.6508
Н	-1.4307	5.2465	0.1603
Н	-1.3968	5.5205	-1.6028
Н	-3.9927	2.9935	-1.0298
Н	-3.6961	4.7529	-1.2387
Н	-3.5217	3.9916	0.3873
S	0.5800	0.4205	1.4272
S	-0.3591	-1.9428	-0.7886
С	5.5127	0.2172	1.1921
С	6.3611	0.4457	0.0895
С	5.5869	0.9891	2.3700
С	7.3088	1.4724	0.1836
Н	6.2817	-0.1641	-0.8147
С	6.5476	2.0090	2.4437
Н	4.9152	0.7910	3.2109
С	7.4030	2.2489	1.3550
Н	7.9777	1.6668	-0.6597
Н	6.6263	2.6124	3.3525
Н	8.1505	3.0454	1.4176
C	5.0033	-2.4157	0.2965
С	6.2044	-2.9236	0.8248
С	4.3439	-3.0166	-0.7865
C	6.7660	-4.0613	0.2255
Н	6.6983	-2.4453	1.6756
С	4.9292	-4.1515	-1.3734
Н	3.4087	-2.5984	-1.1650
С	6.1322	-4.6727	-0.8703
Н	7.7031	-4.4658	0.6187
Н	4.4369	-4.6247	-2.2281
Н	6.5784	-5.5582	-1.3325
S	4.2228	-1.0271	1.1682
0	3.1248	-0.5200	-0.0153
Н	2.2368	-0.2889	0.4761
Н	1.3022	0.2700	-1.3672

		х	у	Z
--	--	---	---	---

Мо	-1.5683	-0.9948	0.7198
Мо	-0.8092	1.5399	-0.0489
S	-2.9653	0.6049	-0.3715
Мо	-1.4685	-0.3750	-1.9385
Cl	-2.3464	1.2233	-3.7326
N	0.8164	3.1612	0.2990
С	0.7316	4.1774	-0.7899
С	-0.7192	4.5772	-0.9971
N	-1.5699	3.3793	-1.2708
С	-3.0088	3.7686	-1.2169
С	2.2328	2.8065	0.5782
Cl	-1.7715	2.8429	1.9292
S	0.6047	0.8612	-1.8835
N	-0.7266	-1.3834	-3.9002
С	0.7153	-1.6612	-4.1396
N	-3.2586	-1.6983	-2.5842
C	-4.6518	-1.1735	-2.5063
С	-1.5500	-2.6016	-4.1500
С	-3.0191	-2.2713	-3.9441
N	-0.9077	-2.6167	2.2532
С	-1.1017	-2.0877	3.6359
С	-2.4586	-1.4103	3.7460
N	-2.6215	-0.3513	2.7057
С	-4.0297	0.1357	2.7013
Cl	-3.5432	-2.6161	0.6585
C	0.3979	-3.3195	2.1429
H	-1.0247	-0.6615	-4.5768
H	-3.1859	-2.4550	-1.8818
H	-1.6529	-3.3104	2.0788
H	-2.0299	0.4616	2.9507
H	0.4253	3.58/7	1.1553
H	-1.3997	3.0601	-2.2404
	1.2/88	-0./185	-4.0972
П	0.8013	-2.1302	-3.1294
	1.00/8	-2.33/0	-3.3339
	-1.2120	-3.3819	-3.4400
<u>п</u> и	-1.3901	-2.9/43	-3.1/94
<u>п</u> и	-3.3404	-1.3074	-4.0734
 	-3.0430	-0.0615	-1.0990
<u>н</u>	-7.0900	-1.9013	-1.4370
H	-4 7136	-0.2460	-2.9008
H	0.4676	-3 8079	1,1613
H	0.4992	-4 0775	2.9407
H	1.2119	-2.5854	2.2344
H	-1.0331	-2.9074	4.3758
H	-0.2821	-1.3770	3.8382
l	1	- · · · •	-

Н	-2.5939	-0.9842	4.7571
Н	-3.2639	-2.1468	3.5805
Н	-4.0887	1.0540	2.1027
Н	-4.3652	0.3506	3.7324
Н	-4.6715	-0.6401	2.2579
Н	2.2763	2.1557	1.4619
Н	2.8311	3.7173	0.7612
Н	2.6516	2.2677	-0.2847
Н	1.1583	3.7264	-1.7022
Н	1.3357	5.0689	-0.5360
Н	-1.1143	5.0511	-0.0819
Н	-0.8048	5.3106	-1.8198
Н	-3.6151	2.9560	-1.6377
Н	-3.1801	4.6907	-1.8020
Н	-3.2926	3.9381	-0.1676
S	0.3885	0.1174	1.4293
S	-0.4027	-2.2059	-0.9203
С	5.4318	0.2343	0.4413
С	5.8934	0.5154	-0.8629
С	5.7053	1.0953	1.5267
С	6.6540	1.6729	-1.0691
Н	5.6610	-0.1568	-1.6932
С	6.4717	2.2474	1.2979
Н	5.3343	0.8611	2.5291
С	6.9448	2.5355	0.0059
Н	7.0211	1.9034	-2.0736
Н	6.7002	2.9173	2.1318
Н	7.5421	3.4358	-0.1665
С	5.0938	-2.4903	-0.2214
С	6.4842	-2.7102	-0.1729
С	4.2308	-3.3436	-0.9302
С	7.0163	-3.8015	-0.8765
Н	7.1417	-2.0455	0.3942
С	4.7862	-4.4296	-1.6271
Н	3.1570	-3.1456	-0.9508
С	6.1716	-4.6593	-1.6019
Н	8.0958	-3.9773	-0.8538
Н	4.1272	-5.0941	-2.1939
H	6.5948	-5.5074	-2.1484
S	4.3971	-1.1734	0.8075
0	2.8912	-0.8839	-0.1324
H	2.1606	-0.6947	0.5509
Н	1.5228	-0.0436	-1.3039

10.5.2 Optimized with PBE0 functional

Stationary point: H₂

	Х	у	Z
Н	0.1401	2.5505	-0.0642
Н	-0.6044	2.5505	-0.0642

Stationary point: H₂O

	Х	у	Z
0	-1.5085	2.5274	-0.0642
Н	-0.5479	2.5790	-0.0642
Н	-1.7805	3.4501	-0.0642

Stationary point: Diphenyl sulfoxide (1a)

	X	V	Z
С	-5.3056	1.9529	1.3084
С	-4.2272	1.7371	0.4531
С	-3.1647	2.6355	0.4796
С	-3.1597	3.7476	1.3126
С	-4.2456	3.9549	2.1594
С	-5.3136	3.0577	2.1596
Н	-6.1429	1.2616	1.3036
Н	-4.2187	0.8835	-0.2199
Н	-2.3148	4.4293	1.2769
Н	-4.2588	4.8179	2.8186
Н	-6.1593	3.2239	2.8202
S	-1.7428	2.3839	-0.6199
0	-0.9746	3.7078	-0.6134
С	-0.8229	1.2746	0.4830
С	-1.0613	-0.0958	0.4399
С	0.1226	1.8322	1.3353
С	-0.3429	-0.9260	1.2977
Н	-1.7918	-0.5128	-0.2484
С	0.8376	0.9914	2.1840
Н	0.2855	2.9059	1.3124
С	0.6024	-0.3835	2.1676
Н	-0.5165	-1.9977	1.2797
Н	1.5799	1.4091	2.8579
Н	1.1635	-1.0360	2.8299

Stationary point: Diphenyl sulfide (2a)

	Х	у	Z
С	-4.9007	1.9405	0.2708
С	-3.5197	2.0879	0.3455
С	-2.9699	3.0487	1.2004
С	-3.8067	3.8658	1.9640

С	-5.1899	3.7264	1.8643
С	-5.7400	2.7616	1.0243
Н	-5.3229	1.1878	-0.3888
Н	-2.8663	1.4564	-0.2489
Н	-3.3773	4.6005	2.6390
Н	-5.8359	4.3653	2.4595
Н	-6.8178	2.6470	0.9573
S	-1.2053	3.3218	1.2905
С	-0.5619	1.6553	1.3625
С	-1.1099	0.6970	2.2214
С	0.5515	1.3389	0.5809
С	-0.5507	-0.5749	2.2823
Н	-1.9738	0.9479	2.8295
C	1.1194	0.0688	0.6666
Н	0.9654	2.0797	-0.0970
С	0.5679	-0.8916	1.5107
Н	-0.9841	-1.3184	2.9450
Н	1.9861	-0.1717	0.0577
Н	1.0051	-1.8840	1.5671

Stationary point: Cluster 5⁺

	X	у	Z
S	-0.2049	-2.0358	-0.1943
Mo	-1.3703	-0.3988	0.9420
S	0.3216	1.1421	1.0899
Мо	-0.9237	1.7029	-0.7711
S	-2.9147	0.4683	-0.6003
Мо	-1.3412	-0.8217	-1.7734
Cl	-2.5569	-0.1778	-3.8730
N	0.4996	3.4471	-1.1128
С	0.2243	4.0438	-2.4367
С	-1.2640	4.1793	-2.6408
N	-1.9317	2.8714	-2.4774
С	-3.3974	3.0373	-2.5098
С	1.9508	3.2876	-0.9087
Cl	-2.0633	3.4996	0.5609
S	0.3609	0.6314	-2.3394
N	-0.4598	-2.3179	-3.2461
С	0.9991	-2.5012	-3.3520
N	-2.9252	-2.4894	-1.8310
С	-4.3633	-2.1594	-1.8141
С	-1.1361	-3.6210	-3.0750
С	-2.6246	-3.4146	-2.9433
N	-0.5013	-1.2173	2.8811
С	-0.8051	-0.2786	3.9816
С	-2.2385	0.1809	3.8846

N .	-2.5044	0.7800	2.5602
C	-3.9434	1.0694	2.4100
Cl	-3.1158	-2.0947	1.5538
С	0.9031	-1.6598	2.9503
Н	-0.7847	-1.9192	-4.1287
Н	-2.7327	-2.9699	-0.9496
Н	-1.0904	-2.0416	3.0122
Н	-2.0254	1.6817	2.5108
Н	0.1595	4.1022	-0.4066
Н	-1.6925	2.2841	-3.2791
Н	1.4707	-1.5516	-3.6040
Н	1.2340	-3.2381	-4.1275
Н	1.3932	-2.8497	-2.3956
Н	-0.7247	-4.0961	-2.1784
Н	-0.9231	-4.2754	-3.9286
Н	-3.0292	-2.9666	-3.8558
Н	-3.1284	-4.3749	-2.7859
Н	-4.6100	-1.6851	-0.8647
Н	-4.9593	-3.0724	-1.9219
Н	-4.5842	-1.4782	-2.6368
Н	1.0771	-2.4446	2.2144
Н	1.1309	-2.0453	3.9499
Н	1.5620	-0.8173	2.7322
Н	-0.6309	-0.7598	4.9513
Н	-0.1152	0.5676	3.8998
Н	-2.4607	0.9018	4.6794
Н	-2.9189	-0.6683	3.9988
Н	-4.0895	1.7196	1.5480
Н	-4.3196	1.5754	3.3060
Н	-4.4837	0.1333	2.2636
Н	2.1442	2.9679	0.1150
Н	2.4669	4.2357	-1.0944
Н	2.3344	2.5302	-1.5948
Н	0.6656	3.3903	-3.1961
Н	0.7047	5.0260	-2.5191
Н	-1.6908	4.8568	-1.8950
Н	-1.4749	4.5926	-3.6335
Н	-3.8654	2.0611	-2.6324
Н	-3.6838	3.6785	-3.3506
Н	-3.7269	3.4909	-1.5742

	x	V	7
Μο	-1.4172	-0.4072	0.9192
Mo	-0.9475	1.6740	-0.7949
S	-2.9682	0.4805	-0.5993

Мо	-1.3667	-0.7698	-1.7850
Cl	-2.5600	-0.1393	-3.8747
N	0.5029	3.4121	-1.1331
С	0.2251	4.0054	-2.4560
С	-1.2635	4.1599	-2.6380
N	-1.9464	2.8602	-2.4641
С	-3.4092	3.0537	-2.4652
С	1.9534	3.2574	-0.9264
Cl	-1.9677	3.4557	0.6391
S	0.4359	0.5894	-2.2763
N	-0.4678	-2.2814	-3.2555
С	0.9895	-2.4390	-3.4046
N	-2.9069	-2.4770	-1.7959
С	-4.3505	-2.1700	-1.7892
С	-1.1067	-3.5943	-3.0342
С	-2.5970	-3.4193	-2.8906
N	-0.5535	-1.2304	2.8793
С	-0.8265	-0.2641	3.9613
С	-2.2551	0.2062	3.8667
N	-2.5200	0.7901	2.5365
C	-3.9622	1.0641	2.3874
Cl	-3.1052	-2.1688	1.5137
С	0.8320	-1.7239	2.9638
Н	-0.8269	-1.9107	-4.1369
Н	-2.7128	-2.9375	-0.9025
Н	-1.1726	-2.0312	3.0196
Н	-2.0501	1.6963	2.4794
Н	0.1629	4.0677	-0.4273
Н	-1.7303	2.2696	-3.2715
Н	1.4339	-1.4902	-3.7039
Н	1.2138	-3.1975	-4.1624
Н	1.4233	-2.7487	-2.4517
Н	-0.6726	-4.0296	-2.1279
Н	-0.8872	-4.2719	-3.8679
Н	-3.0193	-2.9993	-3.8091
Н	-3.0788	-4.3868	-2.7095
Н	-4.6092	-1.6843	-0.8494
H	-4.9327	-3.0933	-1.8856
H	-4.5771	-1.5047	-2.6238
H	0.9771	-2.5378	2.2534
H	1.0446	-2.0891	3.9742
H	1.5262	-0.9148	2.7274
H	-0.6456	-0.7246	4.9399
H	-0.1276	0.5718	3.8507
H	-2.4707	0.9364	4.6550
H	-2.9400	-0.6384	3.9933
Н	-4.1157	1.7210	1.5319

Н	-4.3485	1.5555	3.2875
Н	-4.4903	0.1227	2.2281
Н	2.1459	2.9511	0.1018
Н	2.4680	4.2046	-1.1212
Н	2.3405	2.4935	-1.6030
Н	0.6465	3.3406	-3.2170
Н	0.7173	4.9807	-2.5505
Н	-1.6700	4.8417	-1.8842
Н	-1.4869	4.5768	-3.6263
Н	-3.8988	2.0891	-2.5931
Н	-3.7003	3.7149	-3.2887
Н	-3.7100	3.4970	-1.5146
S	0.4215	0.9909	1.0018
Н	1.4050	-0.0053	0.1447
S	-0.0687	-1.9257	-0.1964
Н	1.2490	-0.9471	-0.2501

	X	у	Z
Мо	-0.0820	-0.5818	1.4698
Мо	0.3830	1.4882	-0.2513
S	-1.6393	0.3030	-0.0373
Мо	-0.0322	-0.9355	-1.2243
Cl	-1.2145	-0.2740	-3.3075
Ν	1.8243	3.2390	-0.6138
С	1.5370	3.8050	-1.9452
С	0.0468	3.9512	-2.1146
Ν	-0.6315	2.6530	-1.9112
С	-2.0934	2.8513	-1.8952
С	3.2765	3.1114	-0.4054
Cl	-0.6067	3.2661	1.2065
S	1.8189	0.3897	-1.6928
Ν	0.8510	-2.4411	-2.7247
С	2.3033	-2.6187	-2.8915
Ν	-1.5787	-2.6382	-1.2517
С	-3.0203	-2.3228	-1.2259
С	0.1964	-3.7499	-2.5297
С	-1.2897	-3.5595	-2.3699
Ν	0.7685	-1.4005	3.4465
С	0.4745	-0.4384	4.5256
С	-0.9529	0.0264	4.4034
Ν	-1.1917	0.6177	3.0709
С	-2.6338	0.8840	2.9039
Cl	-1.7315	-2.3852	2.0290
С	2.1536	-1.8890	3.5542
Н	0.4915	-2.0455	-3.5950

Н	-1.3827	-3.1221	-0.3704
Н	0.1505	-2.2040	3.5756
Н	-0.7293	1.5292	3.0339
Н	1.4752	3.9010	0.0816
Н	-0.4260	2.0482	-2.7124
Н	2.7636	-1.6668	-3.1544
Н	2.5085	-3.3505	-3.6805
Н	2.7382	-2.9774	-1.9566
Н	0.6307	-4.2115	-1.6367
Н	0.4004	-4.4111	-3.3805
Н	-1.7147	-3.1138	-3.2750
Н	-1.7824	-4.5247	-2.2065
Н	-3.2685	-1.8555	-0.2742
Н	-3.6095	-3.2400	-1.3374
Н	-3.2489	-1.6384	-2.0445
Н	2.3149	-2.7001	2.8443
Н	2.3500	-2.2569	4.5671
Н	2.8491	-1.0766	3.3339
Н	0.6388	-0.9000	5.5067
Н	1.1722	0.4004	4.4299
Н	-1.1893	0.7507	5.1911
Н	-1.6364	-0.8222	4.5097
Н	-2.7803	1.5517	2.0557
Н	-3.0378	1.3595	3.8049
Н	-3.1517	-0.0595	2.7233
Н	3.4745	2.8344	0.6301
Н	3.7764	4.0619	-0.6222
Н	3.6747	2.3381	-1.0646
Н	1.9532	3.1250	-2.6957
Н	2.0246	4.7802	-2.0634
Н	-0.3535	4.6448	-1.3679
Н	-0.1899	4.3502	-3.1071
Н	-2.5891	1.8884	-2.0085
Н	-2.3928	3.5068	-2.7202
Н	-2.3794	3.3038	-0.9440
S	1.7806	0.8904	1.6215
Н	2.8016	0.2221	0.9807
S	1.2612	-2.2059	0.3696
Н	2.4952	-1.6142	0.2053

Stationary point: RC1

	Х	у	Z
Мо	-1.7080	-0.8445	1.1952
Мо	-0.6391	1.5604	0.5274
S	-2.7305	0.7786	-0.1681
Мо	-1.0570	-0.4048	-1.3251

Cl	-1.4306	1.1460	-3.2672
N	1.0016	3.0645	1.1061
С	1.1630	4.0392	0.0120
С	-0.1967	4.4945	-0.4479
N	-1.0133	3.3379	-0.8665
С	-2.3989	3.7802	-1.1120
С	2.3169	2.6231	1.5945
Cl	-1.8114	2.9654	2.2544
S	1.0404	0.7363	-0.9610
N	-0.0165	-1.5282	-3.0410
С	1.3856	-1.9617	-2.9497
N	-2.7520	-1.5747	-2.2861
С	-4.0767	-0.9532	-2.4697
С	-0.8778	-2.6533	-3.4493
С	-2.3042	-2.1796	-3.5579
N	-1.4581	-2.4160	2.8602
С	-1.9045	-1.8317	4.1400
С	-3.1926	-1.0762	3.9375
N	-3.0316	-0.0409	2.8968
С	-4.3414	0.5640	2.5893
Cl	-3.7043	-2.2901	0.7867
С	-0.1979	-3.1535	3.0495
Н	-0.0712	-0.8174	-3.7729
Н	-2.8695	-2.3187	-1.5916
Н	-2.1664	-3.0911	2.5677
Н	-2.4529	0.7157	3.2733
Н	0.5289	3.5413	1.8761
Н	-0.6584	2.9987	-1.7636
Н	2.0256	-1.1002	-2.7611
Н	1.7004	-2.4456	-3.8812
Н	1.4897	-2.6685	-2.1265
Н	-0.7814	-3.4394	-2.6931
Н	-0.5461	-3.0653	-4.4103
Н	-2.3884	-1.4070	-4.3291
Н	-2.9640	-3.0087	-3.8371
Н	-4.5162	-0.7482	-1.4947
Н	-4.7365	-1.6291	-3.0249
Н	-3.9568	-0.0201	-3.0232
Н	0.0591	-3.6847	2.1337
H	-0.2963	-3.8720	3.8710
H	0.6045	-2.4522	3.2865
H	-2.0453	-2.6174	4.8924
H	-1.1130	-1.1643	4.4964
H	-3.5203	-0.6228	4.8801
H	-3.9814	-1.7556	3.5988
<u>H</u>	-4.1888	1.4765	2.0150
Н	-4.8717	0.8095	3.5167

Н	-4.9315	-0.1453	2.0066
Н	2.1944	2.0014	2.4812
Н	2.9422	3.4869	1.8452
Н	2.8171	2.0436	0.8180
Н	1.7114	3.5471	-0.7985
Н	1.7574	4.8983	0.3465
Н	-0.7262	4.9849	0.3757
Н	-0.1054	5.2167	-1.2674
Н	-2.9309	3.0065	-1.6643
Н	-2.4043	4.7053	-1.7003
Н	-2.8921	3.9521	-0.1536
S	0.1780	0.1857	2.3000
S	-0.3234	-2.2070	-0.0819
С	4.9303	0.4289	0.3974
С	4.5935	0.7825	-0.9100
С	5.5421	1.3327	1.2630
С	4.8699	2.0721	-1.3496
Н	4.1284	0.0591	-1.5724
С	5.8250	2.6197	0.8069
Н	5.7886	1.0392	2.2795
С	5.4835	2.9883	-0.4919
Н	4.6109	2.3624	-2.3633
Н	6.3039	3.3332	1.4700
Н	5.6982	3.9933	-0.8421
С	5.0139	-2.2332	-0.2682
C	6.3513	-2.2341	-0.6607
C	4.0765	-3.0793	-0.8472
С	6.7454	-3.0951	-1.6801
Н	7.0696	-1.5645	-0.1956
С	4.4855	-3.9352	-1.8693
Н	3.0489	-3.0491	-0.4983
С	5.8147	-3.9417	-2.2850
Н	7.7812	-3.1020	-2.0054
Н	3.7627	-4.5966	-2.3380
Н	6.1302	-4.6092	-3.0811
S	4.4590	-1.1687	1.0839
0	2.9121	-1.2440	1.0208
Н	1.2518	-0.5168	1.8070
Н	1.7695	-0.1788	-0.2270

	Х	у	Z
Мо	-1.4712	-1.0180	0.6931
Мо	-0.6669	1.5229	0.0815
S	-2.7946	0.6406	-0.3361
Мо	-1.2355	-0.2648	-1.8443

Cl	-2.0434	1.3855	-3.5709
N	0.9412	3.1010	0.5535
С	0.8632	4.1766	-0.4504
С	-0.5791	4.5628	-0.6519
N	-1.3784	3.3873	-1.0463
С	-2.8101	3.7382	-1.0298
С	2.3403	2.7253	0.8006
Cl	-1.6535	2.6949	2.1005
S	0.8254	0.9693	-1.7032
N	-0.3745	-1.1563	-3.7901
С	1.0559	-1.4712	-3.9333
N	-2.9613	-1.5323	-2.6457
С	-4.3459	-1.0340	-2.5745
С	-1.2005	-2.3158	-4.1725
С	-2.6605	-1.9704	-4.0238
N	-0.8768	-2.7067	2.1409
С	-1.1222	-2.2575	3.5246
С	-2.4609	-1.5693	3.6125
N	-2.5407	-0.4480	2.6567
С	-3.9126	0.0887	2.6298
Cl	-3.4422	-2.5527	0.4916
С	0.4246	-3.3871	2.0487
Н	-0.5891	-0.3974	-4.4392
Н	-2.9032	-2.3430	-2.0242
Н	-1.5981	-3.3914	1.9088
Н	-1.9370	0.3113	2.9841
Н	0.5597	3.4661	1.4282
Н	-1.1544	3.1483	-2.0154
Н	1.6452	-0.5629	-3.8049
Н	1.2591	-1.8928	-4.9245
Н	1.3477	-2.1936	-3.1684
Н	-0.9279	-3.1499	-3.5174
Н	-0.9918	-2.6157	-5.2071
Н	-2.9210	-1.1416	-4.6901
Н	-3.2847	-2.8296	-4.2957
Н	-4.6432	-0.9479	-1.5305
Н	-5.0263	-1.7258	-3.0849
H	-4.3941	-0.0536	-3.0521
Н	0.5342	-3.8363	1.0621
H	0.5031	-4.1670	2.8149
H	1.2268	-2.6618	2.1910
H	-1.0957	-3.1095	4.2154
H	-0.3133	-1.5733	3.7997
H	-2.6387	-1.2152	4.6350
H	-3.2624	-2.2698	3.3560
H	-3.9119	1.0463	2.1115
Н	-4.2839	0.2347	3.6511

Н	-4.5589	-0.6157	2.1032
Н	2.3871	2.0285	1.6374
Н	2.9432	3.6102	1.0354
Н	2.7542	2.2452	-0.0883
Н	1.3049	3.8015	-1.3800
Н	1.4463	5.0487	-0.1292
Н	-0.9997	4.9404	0.2861
Н	-0.6642	5.3572	-1.4029
Н	-3.3725	2.9733	-1.5640
Н	-2.9715	4.7065	-1.5186
Н	-3.1511	3.7879	0.0058
S	0.4717	0.0535	1.5865
S	-0.2377	-2.1473	-0.9028
С	4.8267	0.2326	-0.0168
С	4.6809	0.2942	-1.4028
С	5.4495	1.2415	0.7124
С	5.1766	1.4069	-2.0710
Н	4.1849	-0.5080	-1.9415
С	5.9496	2.3470	0.0251
Н	5.5331	1.1745	1.7930
С	5.8083	2.4297	-1.3577
Н	5.0728	1.4771	-3.1492
Н	6.4376	3.1455	0.5744
Н	6.1923	3.2959	-1.8875
С	4.9170	-2.5361	0.1630
С	6.2301	-2.8018	0.5463
С	4.2266	-3.3315	-0.7452
С	6.8747	-3.8962	-0.0221
Н	6.7448	-2.1714	1.2661
С	4.8893	-4.4248	-1.2997
Н	3.1979	-3.0985	-1.0003
С	6.2066	-4.7040	-0.9426
Н	7.8988	-4.1196	0.2596
Н	4.3699	-5.0585	-2.0119
Н	6.7153	-5.5581	-1.3787
S	4.0925	-1.1190	0.9000
0	2.6377	-1.2479	0.2732
Н	1.7074	-0.6802	0.8975
Н	1.6751	0.0291	-1.1793

	Х	у	Z
Mo	-1.5416	-0.8161	0.9192
Мо	-0.7500	1.7141	0.3184
S	-2.9031	0.8614	-0.0313
Мо	-1.4163	0.0058	-1.6323

Cl	-2.2999	1.7062	-3.2871
N	0.8864	3.2652	0.7766
С	0.7890	4.3633	-0.2000
С	-0.6538	4.7766	-0.3401
N	-1.4875	3.6233	-0.7261
С	-2.9118	3.9916	-0.6453
С	2.2861	2.8699	0.9794
Cl	-1.6688	2.8606	2.4025
S	0.6676	1.1853	-1.5296
N	-0.6620	-0.8447	-3.6415
С	0.7585	-1.1539	-3.8656
N	-3.1874	-1.2490	-2.3745
С	-4.5648	-0.7497	-2.2262
С	-1.5058	-1.9974	-4.0032
С	-2.9562	-1.6555	-3.7741
N	-0.9175	-2.5394	2.3123
С	-1.1162	-2.1167	3.7113
С	-2.4503	-1.4292	3.8570
N	-2.5611	-0.2935	2.9234
С	-3.9303	0.2474	2.9525
Cl	-3.5378	-2.3584	0.7546
С	0.3681	-3.2369	2.1709
Н	-0.9126	-0.0722	-4.2610
Н	-3.1010	-2.0724	-1.7742
Н	-1.6565	-3.2063	2.0835
Н	-1.9399	0.4584	3.2345
Н	0.5306	3.6127	1.6692
Н	-1.3068	3.3996	-1.7078
Н	1.3524	-0.2472	-3.7490
Н	0.9111	-1.5558	-4.8741
Н	1.0894	-1.8905	-3.1306
Н	-1.2006	-2.8429	-3.3777
Н	-1.3494	-2.2782	-5.0525
Н	-3.2467	-0.8111	-4.4081
Н	-3.5944	-2.5077	-4.0369
Н	-4.8120	-0.6884	-1.1675
H	-5.2723	-1.4262	-2.7206
H	-4.6321	0.2427	-2.6762
H	0.4751	-3.6076	1.1516
H	0.4311	-4.0751	2.8747
H	1.17/97/	-2.5386	2.3803
H	-1.0668	-2.9805	4.3862
H	-0.2982	-1.4367	3.9706
H	-2.5923	-1.0927	4.8911
H	-3.2609	-2.1249	3.6165
H	-3.9425	1.2155	2.4543
Н	-4.2685	0.3731	3.9881

Н	-4.5957	-0.4437	2.4320
Н	2.3452	2.1609	1.8046
Н	2.9076	3.7435	1.2089
Н	2.6693	2.3934	0.0745
Н	1.1907	4.0024	-1.1532
Н	1.3967	5.2202	0.1178
Н	-1.0321	5.1421	0.6206
Н	-0.7527	5.5881	-1.0711
Н	-3.5044	3.2421	-1.1687
Н	-3.0812	4.9703	-1.1106
Н	-3.2100	4.0269	0.4041
S	0.4340	0.1936	1.6995
S	-0.3968	-1.9132	-0.7740
С	4.7505	0.3085	0.4191
С	4.7461	0.3933	-0.9742
С	5.2757	1.3100	1.2334
С	5.2885	1.5286	-1.5623
Н	4.3158	-0.4011	-1.5755
С	5.8290	2.4335	0.6228
Н	5.2484	1.2206	2.3151
С	5.8289	2.5422	-0.7657
Н	5.2923	1.6231	-2.6433
Н	6.2462	3.2260	1.2350
Н	6.2509	3.4250	-1.2355
С	4.9645	-2.4696	0.6702
С	6.3327	-2.3137	0.4606
С	4.3245	-3.7029	0.5516
С	7.0760	-3.4340	0.0989
Н	6.8109	-1.3450	0.5621
С	5.0865	-4.8064	0.1813
Н	3.2571	-3.7954	0.7184
С	6.4561	-4.6735	-0.0425
Н	8.1415	-3.3303	-0.0779
Н	4.6037	-5.7716	0.0672
Н	7.0424	-5.5403	-0.3302
S	3.9905	-1.0766	1.2332
0	2.6520	-1.3645	0.3418
Н	1.8644	-0.8776	0.7843
Н	1.5159	0.2187	-1.0393

	Х	у	Z
Мо	-1.5067	-0.9649	0.8775
Мо	-0.6010	1.4663	0.0722
S	-2.7151	0.5826	-0.4334
Мо	-1.0867	-0.4876	-1.7425

Cl	-1.7606	0.9938	-3.6718
N	1.0355	3.0103	0.5349
С	1.0783	3.9989	-0.5582
С	-0.3252	4.4155	-0.9186
N	-1.1385	3.2394	-1.2830
С	-2.5495	3.6349	-1.4419
С	2.3975	2.5998	0.9123
Cl	-1.7422	2.8879	1.8341
S	0.9535	0.7040	-1.5426
N	-0.1282	-1.5807	-3.5255
С	1.3036	-1.9202	-3.5391
N	-2.7879	-1.8092	-2.5277
С	-4.1621	-1.2828	-2.5997
С	-0.9459	-2.7661	-3.8424
С	-2.4068	-2.3924	-3.8291
N	-1.0492	-2.4971	2.5221
С	-1.4167	-1.9181	3.8289
С	-2.7573	-1.2334	3.7315
N	-2.7488	-0.2123	2.6668
С	-4.1067	0.3223	2.4666
Cl	-3.4855	-2.5203	0.6670
С	0.2572	-3.1685	2.6078
Н	-0.2895	-0.8896	-4.2602
Н	-2.7919	-2.5510	-1.8238
Н	-1.7472	-3.2068	2.2934
Н	-2.1647	0.5734	2.9639
Н	0.6132	3.4655	1.3461
Н	-0.8322	2.8994	-2.1976
Н	1.8976	-1.0105	-3.4492
Н	1.5693	-2.4326	-4.4709
Н	1.5306	-2.5724	-2.6944
Н	-0.7309	-3.5310	-3.0888
H	-0.6729	-3.1726	-4.8243
H	-2.6078	-1.6350	-4.5939
H	-3.0265	-3.2688	-4.0527
H	-4.5225	-1.0842	-1.5912
H	-4.8249	-2.0123	-3.0799
H	-4.1575	-0.3565	-3.1769
H	0.4658	-3.6861	1.67/16
H	0.2645	-3.8901	3.4328
H	1.0361	-2.4230	2.7/91
H	-1.4524	-2.6990	4.5988
H	-0.6346	-1.2045	4.10/8
H	-3.0230	-0.7819	4.6947
H	-3.5348	-1.9603	3.4/53
H	-4.0486	1.22/0	1.8630
Н	-4.5663	0.5646	3.4321

Н	-4.7108	-0.4264	1.9513
Н	2.3580	1.9699	1.8007
Н	3.0208	3.4774	1.1187
Н	2.8498	2.0307	0.0979
Н	1.5804	3.5312	-1.4119
Н	1.6667	4.8763	-0.2618
Н	-0.8089	4.8887	-0.0578
Н	-0.3099	5.1427	-1.7391
Н	-3.0904	2.8324	-1.9422
Н	-2.6241	4.5474	-2.0453
Н	-2.9818	3.8102	-0.4554
S	0.3461	0.1394	1.7477
S	-0.2232	-2.2694	-0.5428
С	5.1874	0.1501	0.4312
С	5.2603	0.6318	-0.8812
С	5.5967	0.9285	1.5191
С	5.7688	1.9058	-1.0978
Н	4.9177	0.0227	-1.7114
С	6.0971	2.2050	1.2821
Н	5.5234	0.5424	2.5313
С	6.1846	2.6924	-0.0209
Н	5.8338	2.2896	-2.1111
Н	6.4196	2.8169	2.1182
Н	6.5763	3.6887	-0.2000
С	4.8713	-2.4647	-0.5414
С	6.1901	-2.4911	-0.9997
С	3.9025	-3.3344	-1.0460
С	6.5328	-3.3945	-2.0009
Н	6.9339	-1.8141	-0.5918
С	4.2678	-4.2348	-2.0428
Н	2.8811	-3.2804	-0.6844
С	5.5762	-4.2646	-2.5218
Н	7.5525	-3.4157	-2.3720
Н	3.5203	-4.9083	-2.4508
Н	5.8512	-4.9655	-3.3037
S	4.4309	-1.3936	0.8130
0	2.6981	-1.0091	0.1382
Н	2.1058	-0.9012	0.9247
Н	1.8172	-0.2074	-0.8211

Stationary point: ³TS1

	Х	у	Z
Мо	-1.4007	-0.3824	0.8979
Мо	-0.9722	1.8095	-0.7099
S	-2.9609	0.5004	-0.6691
Мо	-1.4123	-0.8683	-1.8093

Cl	-2.6432	-0.2261	-3.9094
N	0.5387	3.4643	-1.1253
С	0.2371	4.0670	-2.4419
С	-1.2523	4.2580	-2.5898
N	-1.9615	2.9726	-2.4201
С	-3.4200	3.1938	-2.4072
С	1.9867	3.2275	-0.9764
Cl	-1.9139	3.5506	0.7286
S	0.2487	0.6455	-2.3191
N	-0.4917	-2.3488	-3.2620
С	0.9735	-2.4406	-3.4041
N	-2.8910	-2.6045	-1.8003
С	-4.3365	-2.2979	-1.7940
С	-1.0787	-3.6858	-3.0343
С	-2.5730	-3.5523	-2.8875
N	-0.5651	-1.2259	2.8610
С	-0.8637	-0.2806	3.9556
С	-2.2900	0.1931	3.8420
N	-2.5212	0.8060	2.5187
C	-3.9547	1.1052	2.3408
Cl	-3.1299	-2.1174	1.4949
С	0.8231	-1.7084	2.9628
Н	-0.8664	-1.9961	-4.1454
Н	-2.6905	-3.0539	-0.9029
Н	-1.1801	-2.0334	2.9772
Н	-2.0353	1.7048	2.4944
Н	0.2698	4.1433	-0.4120
Н	-1.7621	2.3844	-3.2309
Н	1.3748	-1.4707	-3.6979
Н	1.2329	-3.1852	-4.1640
Н	1.4146	-2.7332	-2.4495
Н	-0.6278	-4.0992	-2.1262
H	-0.8354	-4.3552	-3.8675
H	-3.0091	-3.1488	-3.8069
H	-3.0318	-4.5279	-2.6926
H	-4.5862	-1.7712	-0.8739
H	-4.9160	-3.2263	-1.8435
H	-4.5/06	-1.6708	-2.6550
H	0.9876	-2.5103	2.2432
H	1.0204	-2.0860	3.9/18
H	1.5128	-0.8895	2.7487
	-0./019	-0.7602	4.9282
	-0.1638	0.5579	3.8/46
	-2.3192	0.9093	4.0393
	-2.9801	-0.6509	3.9369
	-4.0802	1.//30	1.4888
Н	-4.3528	1.5944	3.2368
Н	-4.4946	0.1742	2.1615
---	---------	---------	---------
Н	2.2013	2.9144	0.0451
Н	2.5450	4.1429	-1.1995
Н	2.3000	2.4392	-1.6631
Н	0.6234	3.3932	-3.2136
Н	0.7526	5.0287	-2.5464
Н	-1.6267	4.9401	-1.8197
Н	-1.4820	4.6963	-3.5676
Н	-3.9280	2.2389	-2.5406
Н	-3.7087	3.8685	-3.2207
Н	-3.7094	3.6318	-1.4504
S	0.4140	1.0132	1.0486
Н	1.4759	-0.0753	0.1308
S	-0.0984	-1.9572	-0.1730
Н	1.3306	-0.9237	-0.2067

Stationary point: ³I1

	X	у	Z
Mo	-0.0904	-0.6182	1.5224
Mo	0.3864	1.5799	-0.2262
S	-1.5961	0.3076	-0.0275
Мо	-0.0138	-0.9611	-1.2295
Cl	-1.2723	-0.3142	-3.2770
N	1.8139	3.3117	-0.6361
С	1.5331	3.8403	-1.9840
С	0.0423	3.9733	-2.1599
N	-0.6238	2.6723	-1.9419
С	-2.0859	2.8649	-1.9071
С	3.2632	3.1640	-0.4212
Cl	-0.5735	3.3376	1.2870
S	1.7412	0.3986	-1.7294
N	0.8586	-2.4373	-2.7563
С	2.3121	-2.6137	-2.9157
N	-1.5540	-2.6878	-1.2581
С	-2.9956	-2.3739	-1.1992
С	0.2028	-3.7521	-2.6019
С	-1.2813	-3.5721	-2.4098
N	0.7491	-1.4333	3.4949
С	0.4636	-0.4590	4.5661
С	-0.9518	0.0374	4.4257
N	-1.1640	0.6331	3.0885
С	-2.5991	0.9322	2.9063
Cl	-1.7404	-2.3903	2.0370
С	2.1357	-1.9195	3.5953
Н	0.5055	-2.0190	-3.6187
Н	-1.3460	-3.2044	-0.4006

Н	0.1337	-2.2360	3.6391
Н	-0.6839	1.5362	3.0535
Н	1.4727	3.9979	0.0397
Н	-0.4237	2.0663	-2.7409
Н	2.7796	-1.6531	-3.1303
Н	2.5243	-3.3117	-3.7331
Н	2.7350	-3.0158	-1.9930
Н	0.6506	-4.2486	-1.7349
Н	0.3932	-4.3796	-3.4809
Н	-1.7238	-3.1005	-3.2925
Н	-1.7665	-4.5447	-2.2683
Н	-3.2219	-1.9029	-0.2441
Н	-3.5859	-3.2923	-1.2959
Н	-3.2430	-1.6916	-2.0136
Н	2.2919	-2.7359	2.8903
Н	2.3418	-2.2796	4.6092
Н	2.8275	-1.1074	3.3635
Н	0.6072	-0.9176	5.5518
Н	1.1791	0.3645	4.4717
Н	-1.1815	0.7692	5.2083
Н	-1.6561	-0.7950	4.5254
Н	-2.7217	1.5926	2.0490
Н	-2.9955	1.4285	3.7992
Н	-3.1389	-0.0006	2.7345
Н	3.4538	2.9167	0.6233
Н	3.7840	4.0956	-0.6698
Н	3.6452	2.3599	-1.0529
Н	1.9539	3.1403	-2.7137
Н	2.0192	4.8131	-2.1279
Н	-0.3616	4.6719	-1.4192
Н	-0.1958	4.3639	-3.1559
Н	-2.5786	1.8974	-1.9942
Н	-2.4054	3.5050	-2.7376
Н	-2.3600	3.3307	-0.9587
S	1.7663	0.9428	1.6818
Н	2.7790	0.2254	1.1396
S	1.1635	-2.3631	0.3905
Н	2.4225	-1.8973	0.2294

Stationary point: ³I2

	X	у	Z
Mo	-1.5335	-0.8642	1.1270
Мо	-0.7081	1.7454	0.4241
S	-2.7917	0.7568	-0.0416
Мо	-1.1948	-0.1671	-1.5148
Cl	-1.9609	1.4769	-3.2886

N	0.8519	3.3499	0.9312
С	0.7815	4.4362	-0.0630
С	-0.6612	4.7749	-0.3381
N	-1.3952	3.5754	-0.7852
С	-2.8374	3.8742	-0.8610
С	2.2510	2.9894	1.1997
Cl	-1.8375	2.9320	2.3490
S	0.7747	1.2625	-1.4398
N	-0.2926	-1.0882	-3.4134
С	1.1410	-1.4071	-3.5030
N	-2.9132	-1.4085	-2.3409
С	-4.2917	-0.8895	-2.3222
С	-1.1139	-2.2518	-3.7939
С	-2.5758	-1.8922	-3.6952
N	-0.9535	-2.5085	2.6091
C	-1.2406	-2.0376	3.9760
С	-2.5972	-1.3793	4.0045
N	-2.6564	-0.2738	3.0311
С	-4.0385	0.2207	2.9182
Cl	-3.4361	-2.5327	0.7570
C	0.3699	-3.1458	2.5471
Н	-0.4859	-0.3415	-4.0830
Н	-2.8919	-2.1957	-1.6869
Н	-1.6516	-3.2154	2.3715
Н	-2.0840	0.5005	3.3739
Н	0.4480	3.7004	1.8018
Н	-1.1021	3.3503	-1.7384
Н	1.7267	-0.4970	-3.3699
Н	1.3783	-1.8453	-4.4793
H	1.4060	-2.1158	-2.7160
Н	-0.8659	-3.0729	-3.1137
H	-0.8783	-2.5754	-4.8156
H	-2.8116	-1.0825	-4.3938
H	-3.1991	-2.7550	-3.9573
H	-4.6164	-0.7787	-1.2886
H	-4.9642	-1.5859	-2.8367
H	-4.3152	0.0805	-2.8220
H	0.5134	-3.59/1	1.5654
H	0.4656	-3.91/2	3.3205
	1.1401	-2.38//	2.7002
	-1.2104	-2.8/13	4.0890
	-0.4308	-1.3242	4.2310
	-2.0284	-1.0212	3.0133
	-3.3094	-2.1023	3.7201 2.2900
	-4.0339	0.2727	2.3000
	-4.4/02	0.5/5/	3.9123
Н	-4.031/	-0.5116	2.3007

Н	2.2895	2.2675	2.0152
Н	2.8364	3.8762	1.4698
Н	2.6900	2.5408	0.3059
Н	1.2811	4.0889	-0.9739
Н	1.3169	5.3245	0.2951
Н	-1.1454	5.1273	0.5784
Н	-0.7323	5.5733	-1.0866
Н	-3.3396	3.0735	-1.4018
Н	-3.0029	4.8232	-1.3852
Н	-3.2385	3.9398	0.1519
S	0.3712	0.3090	1.9892
S	-0.2588	-1.9713	-0.5153
C	4.7834	0.4138	0.3524
С	4.7790	0.5232	-1.0401
С	5.3240	1.3958	1.1805
С	5.3356	1.6599	-1.6111
Н	4.3474	-0.2594	-1.6572
С	5.8882	2.5236	0.5878
Н	5.2993	1.2878	2.2605
С	5.8878	2.6548	-0.7987
Н	5.3428	1.7704	-2.6906
Н	6.3176	3.3002	1.2119
Н	6.3219	3.5389	-1.2550
С	4.6428	-2.3703	0.2884
С	6.0263	-2.5385	0.2939
С	3.7757	-3.2889	-0.2963
С	6.5544	-3.6653	-0.3276
Н	6.6820	-1.8058	0.7551
С	4.3290	-4.4084	-0.9152
Н	2.7035	-3.1234	-0.2837
С	5.7088	-4.5964	-0.9305
Н	7.6295	-3.8115	-0.3420
Н	3.6721	-5.1325	-1.3867
Н	6.1295	-5.4717	-1.4153
S	3.9626	-0.9494	1.1471
0	2.4929	-0.9446	0.4728
Н	1.7640	-0.5041	1.1153
Н	1.6996	0.4327	-0.8999

11. References

- [1] W. Corporation, *ReVision* **2005**, 94.
- [2] X. Li, Y. Sun, X. Huang, L. Zhang, L. Kong, B. Peng, Org. Lett. 2017, 19, 838–841.
- [3] A. García-Rubia, M. Á. Fernández-Ibáñez, R. Gómez Arrayás, J. C. Carretero, Chem. A

Eur. J. 2011, 17, 3567–3570.

- [4] F. Shi, M. K. Tse, H. M. Kaiser, M. Beller, Adv. Synth. Catal. 2007, 349, 2425–2430.
- [5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. a. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16*, Revision C.02. Gaussian, Inc., Wallingford CT, 2019.
- [7] J. P. Perdew, *Phys. Rev. B* **1986**, *33*, 8822–8824.
- [8] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098–3100.
- [9] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.
- [10] D. Andrae, U. Häubermann, M. Dolg, H. Stoll, H. Preub, *Theor. Chim. Acta* **1990**, 77, 123–141.
- [11] A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R.

Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 237-240.

- [12] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257–2261.
- [13] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213–222.
- [14] M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43–54.
- [15] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3094.
- [16] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys 2010, 132, 154104.
- [17] K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.