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The document contains the following sections:

• Section S1 provides further details regarding the descriptors used in this work, including the utility
scores used for the removal of features from highly correlated pairs, and the software programs
and parameters used to generate the features.

• Section S2 describes the dimensionality reduction methods and parameters used.

• Section S3 outlines the methodology for the identification of the cluster centres in iterative label
spreading (ILS) minimum distance (Rmin) plots, and for the automatic identification of the peaks
that separate the clusters.

• Section S4 explains the internal evaluation metrics for the clustering results.

• Section S5 contains details regarding the reference activity maps and their normalisation.

• Section S6 provides details regarding the computation of the domain relevant evaluation metrics.

• Section S7 shows the correlation matrices for all nanoparticle data sets.

• Section S8 shows the cumulative explained variance plots for all nanoparticle data sets.

• Section S9 demonstrates the ability of the algorithm to distinguish between the bulk and surface
atoms of ordered and disordered nanoparticles.

• Section S10 shows the illustration of the ability of the clustering pipeline to distinguish subsurface
structures.

• Section S11 shows some minimum distance plots for the verification of final clustering results.

• Section S12 demonstrates the impact of the feature space on the clustering results.
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• Section S13 illustrates the ability of the algorithm to identify peaks where human eyes might fail.

• Section S14 shows the profiles of different sets of features for all clusters identified from the surface
atoms of an ordered and a disordered nanoparticle.

• Section S15 tabulates the internal evaluation scores for the clustering results.

• Section S16 shows the comparisons between the catalytic weighting profiles and the surface cluster
GCN distributions for the chosen ordered and disordered nanoparticles.
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S1 Descriptors

The raw data for each structure is in the form of 3D Cartesian coordinates. Feature extraction and
engineering are used to make them more amenable to clustering algorithms. The former is defined as
the process of transforming the raw data into more comprehensive features, while feature engineering
involves generation of new features from existing information. This is done at the atomistic level in this
study, where potentially useful structural features are computed for each atom of any given nanoparticle,
an then grouped into descriptors, including:

a) Positional descriptor: Normalised 3D Cartesian coordinates of the atoms and their normalised
radial distances from the spatial centre point of the nanoparticle. The computation of the centre
of nanoparticle did not take the mass of each atom into account.

b) Geometric descriptor: Statistics (average, minimum, maximum, total number) of bond lengths,
bond angles involving only first nearest neighbours, bond angles involving second nearest neigh-
bours, and bond torsions (taking second nearest neighbours into account), along with Ackland-
Jones angular parameters1 (also known as χ parameters).

c) Steinhardt descriptor: Steinhardt’s bond-orientational order parameters2 and their averages.

d) Neighbour descriptor: Coordination number, generalised coordination number, surface coordina-
tion number, surface generalised coordination number, number of atoms with a magnitude of dot
products of q6 with itself over the threshold of 0.7.

e) Order descriptor: Centrosymmetry parameters,3 entropy-enthalpy parameters,4 and degeneracy
degree.

Descriptors (a), (b), and (d) were generated using the Network Characterisation Package (NCPac),5

(except the Ackland-Jones angular parameters), which returns various atomistic properties averaged
across a given nanoparticle. The program had previously been used for feature extraction for different
nanomaterials such as gold nanorods and platinum nanoparticles.5,6 Descriptors (c) and (e), along with
the Ackland-Jones angular parameters, were generated from the Atomic Simulation Environment 7 and
Python Structural Environment Calculator 8 packages, with the exception being the degeneracy degree,
which was extracted using SYMMOL.9

S1.1 Geometric descriptors

S1.1.1 Bond angles and torsions

An illustration of the bond angles and bond torsions computed was provided in Figure S1.

S1.1.2 Ackland-Jones parameters

The Ackland-Jones (χ) parameters characterise the local atomic environment by measuring all local
angles created by each atom with its neighbours, and generating a vector from the histogram of these
angles to identify crystal structures.1 The histogram consists of the cosine values of the angles with
the following bins (−1.0,−0.945,−0.915,−0.755,−0.705,−0.195, 0.195, 0.245, 0.795, 1.0), with each bin
corresponding to a χi value, where i ∈ 0, 1, ..., 8. χ0 is excluded from our feature pools due to its
exhibition of asymmetricity in supposedly symmetric atomic environments.
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Figure S1: Illustration of (a) bond angle involving only first nearest neighbours , (b) bond angle involving
second nearest neighbours, and (c) bond torsion.

S1.2 Steinhardt descriptors

S1.2.1 Steinhardt’s bond-orientational order parameters

Steinhardt’s bond-orientational order parameters, ql (Equation 1), have been widely used for identifica-
tion of crystallinity (q2 and q6), quantification of solidity or liquidity (q6), distinction of crystal structures
(q4 and q6), and detection of defects,10 due to their desirable rotationally and translationally invariant
properties.

ql (i) =
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4π
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where:
Ylm = spherical harmonics of degree l and order m, m ∈ [−l,+l], m, l ∈ Z
Ni = number of first shell neighbours of atom i
rij = vector from atoms i to j

However, finite temperatures always cause fluctuations in the atomic positions, leading to overlapping
distributions of the ql parameters, making the determination of crystal structures difficult. The averaged
Steinhardt’s parameters, q̄l (Equation 3), were proposed by Lechner and Dellago in 2008 to address the
issue.11 The overlap between the distributions is reduced by incorporating information from the first
nearest neighbour shell, allowing easier identification of crystal structures (commonly q̄4 and q̄6).
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S1.2.2 Neighbour list

The Steinhardt descriptors are very sensitive to the neighbour list. Three neighbour-finding algorithms
were tested, namely solid-angle based nearest-neighbor,12 Voronoi tessellation,13 and adaptive cutoff
neighbour-finding algorithm.14 The solid-angle based nearest-neighbour algorithm equates the solid an-
gles around every atom to 4π and solves Equation 5 iteratively to determine the cutoff radius, R, whereas
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the Voronoi tessellation approach identifies the neighbours of each atom by partitioning the 3D space
into regions closest to each atom and counting the number faces of the Voronoi polyhedra of the atom.13

The latter approach is purely geometric and does not require any parameter except the specification of
distance metric, which is by default Euclidean. However, both of them failed to identify the neighbours
of the edge atoms correctly, as shown in Figure S2. Hence, the neighbour lists in this work are computed
using the adaptive cutoff neighbour-finding scheme, which applies a padding to the average distance of
a specified number of nearest neighbours of a given central atom (Equation 4).

rcut (i) = p

(
1

n

Nmax∑
j=1

rij

)
(4)

where:
p = multiplier to be applied to the cutoff distance as safe padding
Nmax = maximum number of atoms to be considered, default value is 6
ri,j = distance between atoms i and j

Figure S2: Illustrations of the neighbour (red) atoms identified by the (a) solid angle-based nearest
neighbour, (b) Voronoi tessellation, and (c) adaptive cutoff neighbour-finding algorithms given a metal
nanoparticle edge atom (marked by blue crosses).

R
(m)
i =

∑m
j=1 ri,j

m− 2
< ri,m+1 (5)

where:
m = number of neighbours of atom i, which is increased iteratively

S1.3 Neighbour descriptors

S1.3.1 Coordination number

The surface coordination number is obtained by applying the constraint of only including surface atoms
during the counting of neighbouring atoms for the computation of coordination number.

S1.3.2 Number of bonded neighbours

As mentioned in Section S1.2, the q6 parameter could be used to detect crystalline atoms. Atoms i and
j are considered bonded if the magnitude of

∑
−l≤m≤l q

i
lm

(
qjlm
)∗

for l = 6 exceeds a threshold of 0.7,
as implemented in previous studies.15,16 The feature q6q6 denotes the number of neighbouring atoms
that are bonded to the atom of interest. The feature is found to be equivalent to coordination number
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in ideally-shaped polyhedral nanoparticles, but provides complementary information when applied to
more disordered nanoparticles.

S1.4 Order descriptors

S1.4.1 Centrosymmetry parameter

Another parameter that was introduced to identify crystal defects is the centrosymmetry parameter,
CSP (Equation 6).3 This is done by measuring the loss of symmetry (degree of inversion symmetry of
an atomic environment), which requires an algorithm to identify the opposite pairs of neighbours.

For this work, the algorithm used is Greedy Edge Selection,17 which computes a weight, wij =
|ri + rj| for all combinations of neighbour pairs around atom i. N

2
combinations with the smallest weights

are used for the calculation of CSP . An alternative algorithm is Greedy Vertex Matching,18 which orders
neighbouring atoms by their distances from the central atom, and pairs the closest neighbour with its
lowest weight partner. The latter has been found to be more sensitive to perturbations and thus is not
employed here.18

CSP =

Nbulk
2∑

i=1

∥ri + r
i+

Nbulk
2

∥2 (6)

where:
Nbulk = total number of neighbouring atoms, 12 for face-centred cubic and hexagonal close-packed,

8 for body-centred cubic
ri and r

i+
Nbulk

2

= vectors from central atom to two opposite pairs of neighbours

S1.4.2 Entropy parameter

The entropy parameter, ss (Equation 7), is a relatively nascent concept proposed by Piaggi to identify
defects and distinguish between solid and liquid.4 The averaged entropy parameter, s̄is (Equation 9) is
calculated using a simple average.

sis = −2πκBρ

∫ rm

0

[
gim (r) ln

(
gim (r)

)
− gim (r) + 1

]
r2dr (7)

where:
rm = upper bound of integration
gim = radial distribution function centred on atom i

gim (r) =
1

4πρr2

∑
j

1√
2πσ2

e−frac(r−rij)
22σ2

(8)

where:
rij = interatomic distance between atoms i and j
σ = broadening parameter

sis =

∑Ni

j=1 s
j
s + sis

N + 1
(9)
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S1.4.3 Symmetricity parameter

The neighbour list used to compute the Steinhardt descriptors is also used to calculate the degree of
degeneracy, which is defined on the basis of the similarity of the principal moments of inertia.9

S1.5 Feature description

The descriptions of all features, and their corresponding utility scores used for the removal of features
from highly correlated pairs, are tabulated in Table S1.
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Acronym Description Utility score

x,y,z Atomic coordinates in the x, y, and z axes. 10
rad Normalised radial distance from nanoparticle centre. 0
blavg Average bond length (Å). 2
blmax Maximum bond length (Å). 8
blmin Minimum bond length (Å). 8
blnum Number of bonds. 3
ba1avg Average bond angles involving only first nearest neighbours (◦). 2
ba1max Maximum bond angles involving only first nearest neighbours (◦). 8
ba1min Minimum bond angles involving only first nearest neighbours (◦). 8
ba1num Number of bond angles involving only first nearest neighbours. 3
ba2avg Average bond angles involving second nearest neighbours (◦). 2
ba2max Maximum bond angles involving second nearest neighbours (◦). 8
ba2min Minimum bond angles involving second nearest neighbours (◦). 8
ba2num Number of bond angles involving second nearest neighbours. 3
btposavg Average positive bond torsion (◦). 2
btposmax Maximum positive bond torsion (◦). 8
btposmin Minimum positive bond torsion (◦). 8
btposnum Number of positive bond torsions. 3
btnegavg Average negative bond torsion (◦). 2
btnegmax Maximum negative bond torsion (◦). 8
btnegmin Minimum negative bond torsion (◦). 8
btnegnum Number of negative bond torsions. 3

chiX χX−1 Ackland-Jones parameter. 6
q2 q2 Steinhardt parameter. 5.7
q4 q4 Steinhardt parameter. 5.6
q6 q6 Steinhardt parameter. 5.5
q8 q8 Steinhardt parameter. 5.7
q10 q10 Steinhardt parameter. 5.7
q12 q12 Steinhardt parameter. 5.7
q2avg Averaged q2 Steinhardt parameter. 5.2
q4avg Averaged q4 Steinhardt parameter. 5.1
q6avg Averaged q6 Steinhardt parameter. 5
q8avg Averaged q8 Steinhardt parameter. 5.2
q10avg Averaged q10 Steinhardt parameter. 5.2
q12avg Averaged q12 Steinhardt parameter. 5.2
cn Coordination number. 1
gcn Generalised coordination number. 0
scn Surface coordination number. 3
q6q6 Number of bonded neighbours (q6(i) · q6(j) exceeding 0.7). 2

centParam Centrosymmetry parameter. 4
entroParam Entropy parameter. 5

entroAvgParam Averaged entropy parameter. 5.5
degenDeg Degeneracy degree. 6

Table S1: Description of features used in this work and their corresponding utility scores (in the range
[0, 10]). Lower scores correspond to higher utility due to greater ease of interpretation of higher relevance
to catalysis.
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S1.6 Software parameters

S1.6.1 Network Characterisation Package

Network Characterisation Package (NCPac)19 returns various atomic structural properties averaged
across a given nanoparticle. For any given conformation, NCPac identifies the first nearest neighbours
of all atoms and the surface atoms before computing the structural properties of all atoms and averaging
over them. The nearest neighbours are identified using cutoff distance specified by the users, while the
surface atoms are identified using a cone angle algorithm, depicted in Algorithm 1. Table S2 lists the
input parameters used to generate the atomistic features via NCPac.

Algorithm 1 Pseudocode for determining whether a given atom is a surface atom.
Input:
n : number of points to be generated on the spherical surface of the atom−→
i : atomic coordinates of the given atom

J : {−→j1 ,
−→
j2 , ...,

−→
jm} list of atomic coordinates of nearest neighbours of the given atom

θthresh : threshold of cone angle
Output:
isAtom: whether the atom is a surface atom

1: procedure coneAngleSurf(n,
−→
i , J, θthresh)

2: Generate n equidistant spherical mesh of points K : {
−→
k1 ,
−→
k2 , ...,

−→
kn} at unit radius around the

atom using the Rakhmanov algorithm20.
3: θmin ← 180
4: for

−→
j inJ do

5: for
−→
k inK do

6: v1 ←
−→
i −−→j

7: v2 ←
−→
i −
−→
k

8: θ ← angle between v1 and v2 ▷ Angle computed using dot product
9: if θ < θmin then
10: θmin ← θ
11: end if
12: end for
13: end for
14: if θmin > θthresh then
15: isAtom← 1. ▷ Atom is a surface atom.
16: else
17: isAtom← 0. ▷ Atom is not a surface atom.
18: end if
19: end procedure

S1.6.2 Python Structural Environment Calculator

The nearest neighbours lists are computed using the function and parameters find neighbors(method=’cutoff’,
cutoff =’adaptive’, threshold=2, filter=None, padding=1.2, nlimit=6). The following functions and pa-
rameters were used to calculate the:
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Parameter Description Value

in xyz prec Decimal places in coordinates. 4
in bound dist Buffer distance from box boundaries in each axis. 10.0
in cutoff(i,j) Nearest neighbour cutoff matrix between elements i and j. Pd 3.3

in xl, in yl, in zl Cell lengths in x, y, z directions (Å). 30.0, 30.0, 30.0
in density Reduced density. 0.05
in delr Spacing interval for radial distribution function (Å). 0.08

in gr points Number of points for radial distribution function. 120
in sq points Number of S(q) points (must be 2n + 1, i.e. 65, 129, 257, ...). 513
in cluster flag Whether to filter out small atom clusters. 0
in surf flag Whether to find and analyse the surface layer. 1
in cone angle Cone angle beyond which defines surface particles (◦). 45
in surf points Number of points in spherical point distribution. 3000
in chain flag Whether to conduct chain analysis. 0
in q6order flag Whether to conduct q6 order analysis. 1

in q6order dotmin Minimum q6(i) · q6(j) threshold for atoms i and j to be classified as 0.7
similarly bonded.

in sc flag Whether to conduct signature cells analysis. 0
in SU flag Whether to conduct structural unit analysis. 0

in fradim flag Whether to conduct fractal dimension analysis. 0
in lindem flag Whether to calculate Lindemann index. 0

Table S2: Input parameters for Network Characterisation Package.

1. χ parameters: calculate chiparams(angles=False)

2. Steinhardt’s parameters: calculate q(q=[2, 4, 6, 8, 10, 12], averaged=True, only averaged=False,
condition=None, clear condition=False)

3. centrosymmetry parameter: calculate centrosymmetry(nmax=CN , get vals=True), where CN is
the coordination number of the given atom.

4. entropy parameters: calculate entropy(rm=1.4×LC, sigma=0.2, rstart=0.001, h=0.001, local=False,
M=12, N=6, ra=None, averaged=True, switching function=False), where LC is the lattice con-
stant of face-centred cubic palladium (3.89).

S1.6.3 SYMMOL

The source code for SYMMOL is freely available at https://github.com/fxcoudert/symmol. As
orthogonal coordinates are used, the cell parameters in the first line of the input file for the SYMMOL
program are set to “1 1 1 90 90 90”. The INDWGH and INDTOL parameters are set to 2 and 1
respectively, to calculate the moment of inertia with weights of 1.0, using DCM as the acceptance
threshold for the symmetry element of a given molecular group. DCM is initialised as 0.1 and increased
by 0.1 until a symmetry element is found, or DCM reaches 10.0.
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S2 Dimensionality reduction

S2.1 Principal component analysis

Principal component analysis is used to reduce the dimensionality of the feature space, while preserving
as much variance in data as possible. This is achieved by projecting each data sample onto a speci-
fied number of principal components of high-dimensional data, which are directions that maximise the
variance of the projected data. In our case, the number is determined such that 99% of the variance
in data is preserved. The scikit-learn package implementation is employed in this work, with the pa-
rameters being n components=0.99, whiten=False, svd solver=’auto’, tol=0.0, iterated power=’auto’,
random state=42.

S2.2 t-Stochastic Neighbour Embedding

To visualise the high-dimensional data in two dimensional figures, we used t-distributed stochastic
neighbour embedding (t-SNE) to learn the representation of the data in 2D manifold.21 t-SNE is chosen
over alternative approaches such as uniform manifold approximation and projection (UMAP), which
was regarded as superior to the former in terms of preservation of the global structure of data and run
time performance, due to its tuning flexibility for the display of local structures in data. Moreover, it
was recently found that the t-SNE performs as well as UMAP when informative initialisation (such as
principal component analysis initialisation) is used.22

The t-SNE algorithm attempts to embed high-dimensional data into low-dimensional space such that
similar samples in original feature space are close to each other in the embedded space, and vice versa.
The algorithm first constructs a probability distribution over pairs of high-dimensional samples where the
probability is proportional to their similarity. A similar probability distribution is then defined over the
samples in the low-dimensional space. The Kullback-Leibler divergence between the two distributions is
minimised with respect to the locations of the samples in the map. The scikit-learn package implementa-
tion is also used, with the parameters being n components=2, perplexity=30.0, early exaggeration=12.0,
learning rate=’auto’, n iter=1000, n iter without progress=300, min grad norm=1e-7, metric=metric,
random state=42, init=’pca’, method=’barnes hut’, and angle=0.5.

S2.2.1 Visualisations of ordered nanoparticles data sets

Figure S3 visualises the rest of the highly ordered nanoparticles simulated at 0 K, which are omitted in
the main text.

S2.2.2 Impact of perplexity values

It is commonly known that different values of the perplexity parameter can significantly impact the
resulted projection of t-SNE.21,23 The parameter dictates the balance between preserving the global and
the local structure of the data, by specifying the size of the neighbourhood used for attracting points.23

To investigate its impact on the resulting visualisations and look out for potential projection artefacts,
we show the changes in the resulted projections as the perplexity value is varied over a wide range in
Figure S4. It is observed that the bulk and surface atoms consistently form different groups, which
boosts our confidence for the statement made in the main text.
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Figure S3: Mapping of the high dimensional data sets for the (a) cuboctahedron, (b) cube, (c) deca-
hedron, and (d) icosahedron nanoparticles simulated at 0 K onto 2D manifold learnt via t-distributed
stochastic neighbour embedding. The red and blue points correspond to surface and bulk atoms, re-
spectively.

Figure S4: Mapping of the high dimensional data sets for the tetrahedron nanoparticle simulated at 0
K onto 2D manifold learnt via t-distributed stochastic neighbour embedding, with perplexity of (a) 10,
(b) 30, (c) 50, (d) 100, and (e) 120. The red and blue points correspond to surface and bulk atoms,
respectively.
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S3 Cluster identification

S3.1 Identification of cluster centres

ILS requires one or more initialised label(s) since it is a semi-supervised clustering approach. The overall
pipeline can be made unsupervised by automating the label initialisation step. ILS works the best when
the initialised labels are located at the centres of any given cluster. Therefore, we have utilised an
approach developed to identify the cluster centres automatically in this work, the source code of which
is freely available at https://github.com/Thea-Hsu/EILS.

The most prominent cluster centre is first identified via a method proposed by Rodriguez,24 which
is based on the idea that cluster centres are characterised by higher density than their neighbours, and
by a relatively large distance from other samples with higher densities. The sample with the highest
γ score (Equation 12), which is computed based on their local density ρ (Equation 10) and minimum
distance of the sample from other samples with higher density δ (Equation 11), is determined as the
most prominent cluster centre, which is then solely labelled for the initial parse of ILS. The centres of
each cluster identified from the initial Rmin plot are also identified by comparing the the γ scores of the
samples within the cluster. By labelling these cluster centres with different labels and rerunning ILS on
all samples, another Rmin plot that groups all samples into different clusters can then be obtained. To
make sure all clusters have a size larger than a threshold (specified to be 10 in this work), the centres
for clusters that are smaller than the threshold can be removed before rerunning ILS to obtain the final
Rmin plot.

ρi =
∑
j

χ(dij − dc) (10)

where χ(x) = 1 if x < 0, otherwise χ(x) = 0, dc = cutoff distance.

δi = min
j:pj>pi

(dij) (11)

except for the point with highest density (δi = maxj (dij)), where:

γi = ρiδi (12)

S3.2 Peak identifying algorithm

The clusters can be identified automatically by dividing the Rmin plot at each peak into separate
regions. We have developed a peak-finding algorithm for this purpose, as illustrated in Algorithm 2.
The algorithm first identifies all local peaks by computing a peak function S (Equation 13) proposed
by Palshikar,25 which is the average of the sum of averages of the signed distances of xi from its k left
and right neighbours. The local peaks are the samples with a positive S value, and are considered as
candidates for true peaks, such that:

S =

∑k
j=1(xi−xi−k)

k
+

∑k
j=1(xi−xi+k)

k

2
(13)

where x is a series of samples, and k is the minimum cluster size.
The peak candidates have to satisfy three criteria to be considered a true peak. Firstly, the peak

has to be a maximum within a scanning window 2k. Secondly, the signal-to-noise ratio of the peak has

S13

https://github.com/Thea-Hsu/EILS


to exceed a proportion of the global maximum peak value, defined as threshold h. Lastly, the peak also
needs to be sufficiently different from the other identified peaks, with a specified peak function value
difference threshold t. This is set as a requirement because the ordered nanoparticles data sets are
highly prone to false positives. For this work, we have set the values of k, h, and t to be 25, 0.06, and
0.01, respectively. The values here were chosen based on empirical experiments, but the parameters can
be tuned to vary the sensitivity of the algorithm.

Algorithm 2 Pseudocode for the algorithm to find peaks in minimum distance plots returned by ILS
clustering algorithm.
Input:

X : Minimum distance data: x1, ..., xn

k : Window size ∈ R
h : Significance constant ∈ [1.0, 3.0]
t : Difference threshold ∈ R

Output:
P : Peaks: p1, ..., pk

1: procedure findPeaks(X, k, h, t)
2: V ← ∅
3: for i = 2, ..., n do
4: Compute S(X, k) ▷ Equation 13
5: V ← V ∪ S(X, k)
6: end for
7: P ← ∅
8: for i = 2, ..., n do
9: if S(i) < hmax(S) then ▷ Not globally significant
10: Skip candidate
11: end if
12: for j = 1, ..., k do
13: if S(i)− S(j) < h then ▷ Not different enough
14: Skip candidate
15: end if
16: end for
17: if i− Pprev < k then ▷ Multiple peaks within k
18: P ← P ∪ arg max {S(Pprev), S(i)}
19: end if
20: end for
21: return P
22: end procedure
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S4 Internal cluster evaluation

The Silhouette coefficient (Equation 14),26 Calinski-Harabasz index (Equation 15),27 and Davies-Bouldin
index (Equation 18)28 are used to evaluate the clustering results in the main text.

SC =
N∑
i=1

b (i)− a ()

max (a (i) , b (i))
(14)

where:
N = total number of samples in data
a = mean distance between sample i and all other samples in the same cluster
b = mean distance between sample i and all other samples in the next nearest cluster

CH =
tr (Bk)

tr (Wk)
× nE − k

k − 1
(15)

where:
tr (Bk) = trace of between-cluster dispersion matrix
tr (Wk) = trace of within-cluster dispersion matrix

Bk =
k∑

q=1

nq (cq − cE) (cq − cE)T (16)

Wk =
k∑

q=1

∑
x∈Cq

(x− cq) (x− cq)
T (17)

where:
k = number of clusters
Cq = set of samples in cluster q
cq = centre of cluster q
cE = centre of data E
nq = number of samples in cluster q

DB =
1

k

k∑
i=1

maxi ̸=jRij, where Rij =
si + sj
dij

(18)

where:
si = average distance between each member of cluster i and the cluster centroid
dij = distance between cluster centroids i and j
Rij is chosen such that it is non-negative and symmetric.
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S5 Reference activity maps

Figure S5 shows the activity maps for some reactions prior to and after normalisation, which is conducted
while preserving the gradients of each equation instead of the intercepts (or equivalently, the range of
the activity maps) as we are more interested in the range of GCN that are the most relevant to any
given chemical reaction. It is noted that these maps were obtained using different reference electrodes.
However, as the activity maps are obtained with the assumption that the GCN-activity relationship
is linear, different choices of reference electrodes only result in shifting of the intercepts of the fitted
equations, which is accounted for by the normalisation. Readers are directed to the corresponding
publications mentioned in Section 1 in the main text for further details.

Figure S5: Reference activity maps for (a) carbon dioxide reduction, (b) carbon monoxide oxidation,
(c) oxygen reduction, and (d) aliphatic ketone reduction reactions prior to and after normalisation. The
red and blue lines correspond to the original and adjusted maps (so that the area under the lines sums
up to 1), respectively.

S16



S6 Domain relevant cluster evaluation

S6.1 Computation of p(g)

p(g) is the GCN distribution of a given cluster. The distribution is computed via the fast Fourier
transform based kernel density estimation (KDE) method provided by the publicly available Python
package KDEpy. We applied Silverman’s rule of thumb for bandwidth selection and used Gaussian
kernels for the computation. The KDE is first fitted to the GCN values of the surface atoms of a given
cluster, and then evaluated on a grid with the range of [1, 14] with a spacing of 0.001.

S6.2 Computation of q(g)

q(g) is the catalytic weighting profile obtained from the reference reaction GCN-activity map. The
activity maps are composed of multiple linear equations. We list below the equations obtained from the
previous publications:

Equations 19 and 20 form the activity map for oxygen reduction reaction catalysed by gold nanopar-
ticles29:

uAuORR1 = 0.128g + 0.201 (19)

uAuORR2 = −0.160g + 1.686 (20)

Equations 21 and 22 form the activity map for oxygen reduction reaction catalysed by platinum
nanoparticles29:

uPtORR1 = 0.192g − 0.715 (21)

uPtORR2 = −0.169 + 2.270 (22)

Equations 23 and 24 form the activity map for carbon monoxide oxidation reaction catalysed by
platinum nanoparticles30:

uPtCOOR1 = 0.3701g − 2.464 (23)

uPtCOOR1 = −0.1886g + 0.560 (24)

Equations 25 and 26 form the activity map for reverse water-gas shift reaction catalysed by copper
nanoparticles31:

uCuRWGSR1 = 0.30833g − 0.880 (25)

uCuRWGSR2 = 0.1875g + 2.3225 (26)

Equations 27 to 29 form the activity map for reverse water-gas shift reaction catalysed by copper
nanoparticles32:

uCuCO2RR1 = 0.163g − 1.133 (27)
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uCuCO2RR2 = −0.067g − 0.416 (28)

uCuCO2RR3 = −0.223g + 0.853 (29)

Equations 30 to 34 form the activity map for aliphatic ketone reduction reaction catalysed by plat-
inum nanoparticles33:

uPtRCORRR1 = 0.063g − 0.350 (30)

uPtRCORRR2 = 0.290g − 1.600 (31)

uPtRCORRR3 = −0.270g + 1.750 (32)

uPtRCORRR4 = 0.055g − 0.420 (33)

uPtRCORRR5 = −0.055g + 0.420 (34)

The algorithm to normalise a given GCN-activity map is described in Algorithm 3. For each reaction
of interest, the potential values within a range of GCN values of interest are first computed from the
linear equations forming the activity map. The y = 0 line is then moved while keeping the gradients
of the linear equations unchanged until the total area under the composite function is approximately
1. While Simpson’s composite integration and Romberg’s method are known for their capability of
returning higher accuracy for area under curves, the simpler trapezoidal method is used here as the
composite functions are comprised of only straight lines.34 Readers are referred to the notebooks made
available at https://github.com/Jon-Ting/metal-nanoparticle-surface-atom-labelling for the
exact code used.

S6.3 Computation of O(p, g)

O(p, q) is the overlapped GCN range between p(g) and q(g). The algorithm to compute the overlapping
range is shown in Algorithm 4.
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Algorithm 3 Pseudocode for the algorithm to normalise a given generalised coordination numbers-
activity map into a catalytic weighting profile for a particular chemical reaction.
Input:

G : {g1, ..., gn} Generalised coordination numbers in the range of interest
M : {m1, ...,mk} Gradients of linear equations for the given chemical reaction
C : {c1, ..., ck} Intercepts of linear equations for the given reaction
Adiffthresh : Area difference threshold

Output:
Uadjusted : {u1, ..., un} Catalytic weighting profile

1: procedure qNormalise(G,M,C,A)
2: S : {s1, ..., sk−1} ← g values at the intersection points of each pair of consecutive linear equations
3: i← 0
4: U ← ∅
5: ml,mr ←Mi,Mi+1 ▷ Initialise left and right gradients and intercepts
6: cl, cr ← Ci, Ci+1

7: for g ∈ G do
8: if (g > Si) & (i < k − 1) then ▷ Whenever an intersection is encountered
9: i← i + 1
10: ml,mr ←Mi,Mi+1 ▷ Update gradients and intercepts
11: cl, cr ← Ci, Ci+1

12: end if
13: if mr < ml then ▷ Take minima of both lines if right slope is smaller in value
14: U ← U ∪min(mlg + cl,mrg + cr)
15: else ▷ And vice versa
16: U ← U ∪max(mlg + cl,mrg + cr)
17: end if
18: end for
19: U ← U −min(U) ▷ Ensure all values are positive
20: Aupper, Alower ← current area under g curve, 0.0 ▷ Area computed using trapezoidal rule
21: vupper, vlower ← 0,max(U)
22: while Adiff < Adiffthresh do ▷ Until area converges to targeted value

23: rdiff ← 1−
√
Alower√

Aupper−
√
Alower

▷ Difference ratio

24: vadjust ← (1− rdiff )vlower + rdiffvupper ▷ Vertical adjustment distance
25: Uadjusted ← U − vadjust ▷ Compute adjusted potential
26: A← area under g curve above g = 0 ▷ Computed using trapezoidal rule
27: Adiff ← |1− A| ▷ Deviation from targeted area
28: if Adiff > 0 then
29: Aupper, vupper ← A, vadjust
30: else
31: Alower, vlower ← A, vadjust
32: end if
33: end while
34: return Uadjusted

35: end procedure
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Algorithm 4 Pseudocode for the algorithm to compute the overlapping generalised coordination number
range between a given generalised coordination number distribution of a given cluster and a given
catalytic weighting profile.
Input:

p : {p1, ..., pn} Generalised coordination numbers distribution of a given cluster
q : {q1, ..., qn} Catalytic weighting profile
G : {g1, ..., gn} Generalised coordination numbers in the range of interest

Output:
O : {o1, ..., on} Generalised coordination numbers within the overlapping range between p and q

1: procedure calcOverlap(p, q,G)
2: pbulk ← p ▷ Obtain values within full width at half maximum
3: pbulk[p < max(p)

2
]← 0.0

4: O ← ∅
5: for g ∈ G do
6: if (pbulki¬0.0) & (qi¬0.0) then
7: O ← O ∪ g
8: end if
9: end for
10: return O
11: end procedure

S20



S7 Correlation matrices

Figures S6 to S18 show the correlation matrices of features for all nanoparticle data sets.

(a) (b)

(c)

Figure S6: Correlation matrices of features from the data sets of (a) cuboctahedron, (b) icosahedron,
and (c) truncated octahedron nanoparticles simulated at 0 K.
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(a) (b)

(c)

Figure S7: Correlation matrices of features from the data sets of decahedron nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 0 K.
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(a) (b)

(c)

Figure S8: Correlation matrices of features from the data sets of cube nanoparticles with (a) small, (b)
medium, and (c) large sizes simulated at 0 K.
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(a) (b)

(c)

Figure S9: Correlation matrices of features from the data sets of octahedron nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 0 K.
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(a) (b)

(c)

Figure S10: Correlation matrices of features from the data sets of octahedron nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 323 K.
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(a) (b)

(c)

Figure S11: Correlation matrices of features from the data sets of octahedron nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 523 K.
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(a) (b)

(c)

Figure S12: Correlation matrices of features from the data sets of rhombic dodecahedron nanoparticles
with (a) small, (b) medium, and (c) large sizes simulated at 0 K.
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(a) (b)

(c)

Figure S13: Correlation matrices of features from the data sets of rhombic dodecahedron nanoparticles
with (a) small, (b) medium, and (c) large sizes simulated at 323 K.
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(a) (b)

(c)

Figure S14: Correlation matrices of features from the data sets of rhombic dodecahedron nanoparticles
with (a) small, (b) medium, and (c) large sizes simulated at 523 K.
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(a) (b)

(c)

Figure S15: Correlation matrices of features from the data sets of tetrahedron nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 0 K.
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(a) (b)

(c)

Figure S16: Correlation matrices of features from the data sets of tetrahedron nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 323 K.
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(a) (b)

(c)

Figure S17: Correlation matrices of features from the data sets of tetrahedron nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 523 K.
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(a) (b)

(c)

Figure S18: Correlation matrices of features from the data sets of disordered nanoparticles with (a)
small, (b) medium, and (c) large sizes simulated at 723 K.
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S8 Cumulative explained variance plots

Figures S19 to S31 show the cumulative explained variance plots from the principal component analyses
of all nanoparticle data sets.

(a) (b) (c)

Figure S19: Cumulative explained variance plots from the principal component analyses of the data sets
of (a) cuboctahedron, (b) icosahedron, and (c) truncated octahedron nanoparticles simulated at 0 K.

(a) (b) (c)

Figure S20: Cumulative explained variance plots from the principal component analyses of the data sets
of cube nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 0 K.

(a) (b) (c)

Figure S21: Cumulative explained variance plots from the principal component analyses of the data sets
of decahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 0 K.

S34



(a) (b) (c)

Figure S22: Cumulative explained variance plots from the principal component analyses of the data sets
of octahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 0 K.

(a) (b) (c)

Figure S23: Cumulative explained variance plots from the principal component analyses of the data sets
of octahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 323 K.

(a) (b) (c)

Figure S24: Cumulative explained variance plots from the principal component analyses of the data sets
of octahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 523 K.
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(a) (b) (c)

Figure S25: Cumulative explained variance plots from the principal component analyses of the data sets
of rhombic dodecahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 0
K.

(a) (b) (c)

Figure S26: Cumulative explained variance plots from the principal component analyses of the data sets
of rhombic dodecahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 323
K.

(a) (b) (c)

Figure S27: Cumulative explained variance plots from the principal component analyses of the data sets
of rhombic dodecahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 523
K.
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(a) (b) (c)

Figure S28: Cumulative explained variance plots from the principal component analyses of the data sets
of tetrahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 0 K.

(a) (b) (c)

Figure S29: Cumulative explained variance plots from the principal component analyses of the data sets
of tetrahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 323 K.

(a) (b) (c)

Figure S30: Cumulative explained variance plots from the principal component analyses of the data sets
of tetrahedron nanoparticles with (a) small, (b) medium, and (c) large sizes simulated at 523 K.
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(a) (b) (c)

Figure S31: Cumulative explained variance plots from the principal component analyses of the data sets
of disordered nanoparticles with (a) small, (b) medium and (c) large sizes simulated at 723 K.
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S9 Bulk-surface distinction

The ability to distinguish between the bulk and surface atoms of nanoparticles by ILS is confirmed by
comparing Figure S32 with Figure 4(e-h) in the main text. The settings to obtain the central peak are
included Section S3.2.

Figure S32: Minimum distance plots for the (a) octahedron, (b) rhombic dodecahedron, and (c) tetra-
hedron nanoparticles simulated at 523 K, and (d) the smallest disordered nanoparticle simulated at 723
K, coloured by clusters identified.

One exception is the TH nanoparticle simulated at 523 K, where a surface atom identified by the
NCPac 19 is regarded by the algorithm as closer to the bulk clusters in the current feature set used to
describe the atoms, as shown in Figure S33.

Figure S33: Tetrahedron nanoparticle simulated at 523 K, coloured by (a) whether the atom is identified
by Network Characterisation Package to be a surface (red) or bulk (blue) atom, and (b) the clusters
identified using iterative label spreading.
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S10 Subsurface structure distinction

Figure S34 shows that the five-fold twinned axis of the ordered decahedron nanoparticle is successfully
distinguished by the clustering algorithm. By tuning the t threshold to a smaller value of 0.1 compared to
the default 1.2, more refined details of the subsurface structures can be obtained, as shown in Figure S35
in comparison to Figure 5 in the main text.

Figure S34: Cross section of the ordered decahedron nanoparticle shown in Figure 5(c) in the main
text, slicing across the z-axis or (001) plane. The atoms are coloured by the iterative label spreading
clustering results.

Figure S35: Cross section of the ordered (a) octahedron and (b) tetrahedron nanoparticle shown in
Figures 5(e) and 5(g) in the main text, slicing across the x-axis or (100) plane. The atoms are coloured
by the iterative label spreading clustering results.
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S11 Verification of final clustering results

To confirm that we have obtained the final clustering results, we verified that there is no presence of
subclusters by applying the peak identifying algorithm described in Section S3.2 to the Rmin plots for
each cluster of each nanoparticle. To account for the much smaller cluster size, stricter threshold values
of k, h, and t are used, being half of the cluster size, 0.3, and 0.01, respectively. As an example, Fig-
ure S36 shows the Rmin plots for each cluster identified on the surface of the disordered RD nanoparticle
simulated at 523 K (illustrated in Figure 7(d) in the main text).

Figure S36: Iterative label spreading minimum distance plots for each cluster identified for the small
rhombic dodecahedron nanoparticle simulated at 523 K.

S41



S12 Surface patterns identified using other feature spaces

Figure S37 shows the surface patterns on an octahedron nanoparticle simulated at 523 K (shown in
Figure 7(b) in main text) identified by the clustering pipeline with different feature spaces, defined
based on the descriptors described in Section S1. Figure S38 shows the ILS minimum distance plots
corresponding to 3 different feature spaces, coloured by the identified clusters. It illustrates the impact of
the feature space in allowing structural characteristics in disordered nanoparticles to be distinguished.
The feature space consisting of the neighbour, order, and Steinhardt descriptors was chosen for the
clustering of disordered nanoparticles as the identified surface patterns in Figure S38 best match the
expectation of the presence of facets and edges according to the typical structure model.

Figure S37: The octahedron nanoparticle simulated at 523 K, coloured by clusters identified from
feature spaces consisting of the geometric (blue), neighbour (orange), order (green), and Steinhardt
(red) descriptors, and their mixtures. The arrows represent the presence of the descriptors in the
feature space.
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Figure S38: Iterative label spreading minimum distance plots for octahedron nanoparticle simulated
at 523 K, coloured by clusters identified from feature spaces consisting of (a) neighbour and order
descriptors, (b) neighbour, order, and Steinhardt descriptors, and (c) geometric, order, and Steinhardt
descriptors.
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S13 Capability of peak identification

Figure S39 shows the peaks and cluster centres identified in the Rmin plots obtained from the initial ILS
run for the surface atoms of an ordered DH and a DIS Pd nanoparticle, showing that the peak-finding
algorithm is able to identify the peaks where human eyes might fail (see Figure S39(b)). The cluster
centres (the sample with the highest γ score) identified by the algorithm are not always in the middle
of the cluster as the computation of γ takes into account a sample’s proximity to other high density
samples apart from involving the local density of the given sample. This can be understood as the
cluster having a diffusive shape, where the members of the cluster lie increasingly further away from
each other and the cluster centre.

Figure S39: Peaks identified from the iterative label spreading minimum distance plots for a (a) deca-
hedron nanoparticle simulated at 0 K and (b) small-sized disordered nanoparticles simulated at 723 K.
The red stars and blue lines correspond to the cluster centres and end points, respectively. The yellow
stars indicate that the clusters that they belong to are merged into the closest clusters.
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S14 Surface cluster feature profiles

Figures S40 to S44 shows the box plots that profile the features for all surface atom clusters identified
for the ordered cuboctahedron nanoparticle simulated at 0 K, and the smallest disordered nanoparticle
simulated at 723 K.

(a)

Figure S40: Box plots of features related to bond geometry for (a) the ordered cuboctahedron nanopar-
ticle simulated at 0 K, and (b) the smallest disordered nanoparticle simulated at 723 K.
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(b)

Figure S40: Box plots of features related to bond geometry for (a) the ordered cuboctahedron nanopar-
ticle simulated at 0 K, and (b) the smallest disordered nanoparticle simulated at 723 K.
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(a)

(b)

Figure S41: Box plots of features related to atom coordination for (a) the ordered cuboctahedron
nanoparticle simulated at 0 K, and (b) the smallest disordered nanoparticle simulated at 723 K.

S47



(a)

(b)

Figure S42: Box plots of features related to Steinhardt’s parameters for (a) the ordered cuboctahedron
nanoparticle simulated at 0 K, and (b) the smallest disordered nanoparticle simulated at 723 K.
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(a)

(b)

Figure S43: Box plots of features related to χ parameters for (a) the ordered cuboctahedron nanoparticle
simulated at 0 K, and (b) the smallest disordered nanoparticle simulated at 723 K.
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(a)

(b)

Figure S44: Box plots of radial distance from nanoparticle centre, entropy parameter, centrosymmetry
parameter, and degeneracy degree for (a) the ordered cuboctahedron nanoparticle simulated at 0 K, and
(b) the smallest disordered nanoparticle simulated at 723 K.
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S15 Internal evaluation results

Table S3 tabulates the internal evaluation scores obtained from the clustering results for all nanoparticle
data sets using the original feature space (all features included). Table S4 lists the scores for all disordered
nanoparticle (not simulated at 0 K) data sets using the smaller set of features.

The results from Table S3 indicate that better partitions from the surface clustering are obtained for
more ordered nanoparticles, as seen from the generally higher Silhouette scores and Calinski-Harabasz
indices, and lower Davies-Bouldin indices. This is expected as the features used in this work are purely
geometrical or structural. Structural disorder due to thermal energy in simulations inevitably introduces
noises to the feature space, causing reduction in the differences between the surface atoms and therefore
adding difficulties to the recognition of distinct surface patterns.

A comparison of the results from both tables also shows that the restriction of feature space to the
smaller set of features chosen in Section S12 improves the clustering partitions.
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Shape T (K) Ntotal Nsurf Surface atoms All atoms
S CH DB S CH DB

CO 0 826 336 0.36 162.9 1.14 0.22 315.2 1.99
IC 0 923 362 0.55 485.5 0.72 0.27 394.0 1.38
TO 0 807 348 0.38 225.0 1.00 0.26 524.9 1.83
CU 0 1026 416 0.35 342.5 1.40 0.36 845.2 1.32

1098 432 0.52 421.4 0.95 0.31 608.2 1.57
1372 508 0.28 162.8 1.55 0.25 395.0 2.24

DH 0 686 297 0.36 105.4 1.13 0.20 207.4 1.73
967 382 0.37 164.4 1.21 0.30 429.0 1.41
1132 437 0.35 151.9 1.38 0.30 417.4 1.49

OT 0 670 326 0.41 156.9 1.28 0.48 815.2 1.41
891 402 0.46 243.9 1.13 0.52 1265.6 1.30
1156 486 0.26 213.3 1.39 0.48 1440.6 1.47

323 670 326 0.25 72.9 1.93 0.47 677.6 0.90
891 402 0.30 124.6 1.64 0.51 1084.7 0.84
1156 486 0.28 106.2 1.77 0.51 1376.4 0.84

523 670 326 - - - 0.27 287.0 1.58
891 402 0.20 51.5 2.39 0.30 414.6 1.52
1156 486 0.17 44.4 2.36 0.30 647.9 1.40

RD 0 1163 546 0.33 450.3 1.27 0.41 1285.2 1.27
1524 662 0.29 511.4 1.46 0.37 1541.1 1.52
1957 794 0.34 346.3 1.42 0.33 1359.9 1.73

323 1163 524 0.21 89.5 1.68 0.45 437.9 1.18
1524 654 0.29 155.9 1.38 0.41 571.8 1.55
1957 775 0.28 183.4 1.34 0.41 642.5 1.54

523 1163 489 0.27 99.1 1.61 0.23 351.8 3.33
1524 604 0.12 72.9 2.05 0.25 395.5 1.77
1957 726 0.00 24.2 4.84 0.37 559.0 1.79

TH 0 875 420 0.29 160.8 1.24 0.41 717.1 1.54
969 514 0.22 134.3 1.80 0.34 471.6 1.91
1330 650 0.23 159.0 1.84 0.15 438.3 2.51

323 875 420 0.33 128.1 1.37 0.40 624.6 1.65
969 512 0.22 41.8 2.04 0.35 284.4 1.82
1330 648 0.33 82.5 1.45 0.46 1165.2 0.95

523 875 421 0.25 65.0 1.73 0.42 673.6 1.04
969 475 0.12 20.4 2.11 0.36 324.1 1.30
1330 622 -0.08 20.5 2.17 0.37 527.9 1.67

DIS 723 641 290 0.03 7.6 4.57 0.15 195.4 2.29
864 366 -0.07 7.9 3.46 -0.02 131.3 3.35
1098 436 0.17 40.1 1.88 0.16 378.9 2.95

Table S3: Internal evaluation scores of the clustering of the surface and all atoms using feature space
consisting of all features for all nanoparticles, indicating the temperature (T), the total number of
atoms (Ntotal), and number of surface atoms (Nsurf ). Good clustering partitions are indicated by higher
Silhouette (S) scores (in the range of [−1, 1]), higher Calinski-Harabasz (CH) indices (in the range of
[0,∞)), and lower Davies-Bouldin (DB) indices (in the range of [0,∞)). No score can be computed for
nanoparticles with only one surface atom cluster.
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Shape T (K) Ntotal Nsurf Surface atoms All atoms
S CH DB S CH DB

OT 323 670 326 0.37 160.1 1.12 0.69 2025.2 0.48
891 402 0.43 234.1 1.05 0.52 1329.6 1.19
1156 486 0.49 338.2 1.01 0.32 1988.5 1.42

523 670 326 0.32 114.7 1.48 0.65 1794.7 0.54
891 402 0.39 181.5 1.28 0.65 2381.1 0.54
1156 486 0.38 179.8 1.46 0.54 2182.8 1.30

RD 323 1163 524 0.26 161.3 1.63 0.54 1649.4 1.07
1524 654 0.31 197.4 1.31 0.43 1686.1 1.03
1957 775 0.21 256.0 1.68 0.51 1892.8 1.68

523 1163 489 0.17 77.5 1.96 0.48 1482.4 1.28
1524 604 0.13 90.6 2.19 0.45 865.4 1.55
1957 726 0.08 77.0 2.09 0.46 1204.2 1.87

TH 323 875 420 0.59 395.0 0.74 0.39 1536.0 1.08
969 512 0.36 255.8 1.22 0.66 1758.7 0.95
1330 648 0.42 329.2 1.23 0.67 3184.0 0.69

523 875 421 0.44 283.7 1.09 0.46 1163.7 1.03
969 475 0.18 58.8 1.66 0.50 1094.9 0.71
1330 622 0.17 60.6 1.89 0.53 1464.8 0.91

DIS 723 641 290 0.10 26.1 2.11 0.49 832.9 0.84
864 366 0.06 33.4 2.45 0.47 973.4 0.89
1098 436 0.02 21.5 2.82 0.30 917.7 1.41

Table S4: Internal evaluation scores of the clustering of the surface and all atoms using feature space
consisting of the Steinhardt, neighbour, and order descriptors for all disordered nanoparticles, indicat-
ing the temperature (T), the total number of atoms (Ntotal), and number of surface atoms (Nsurf ).
Good clustering partitions are indicated by higher Silhouette (S) scores (in the range of [−1, 1]), higher
Calinski-Harabasz (CH) indices (in the range of [0,∞)), and lower Davies-Bouldin (DB) indices (in the
range of [0,∞)).
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S16 Visualisation of domain relevant cluster evaluation

Figures S45 and S46 show the comparisons between the catalytic weighting profiles obtained from the
reference activity maps for the chemical reactions and the surface cluster GCN distributions for both
nanoparticles, from which the selectivity, specificity, and sensitivity scores were computed.

Figure S45: Evaluation of the generalised coordination number distributions of clusters 1 (a-c), 2 (d-f),
3 (g-i), and 4 (j-l) of an ordered cuboctahedron nanoparticle simulated at 0 K by the catalytic weighting
towards oxygen reduction reaction (a, d, g, j), carbon monoxide oxidation reaction (b, e, h, k), aliphatic
ketone reduction reaction (c, f, i, l).
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Figure S46: Evaluation of the generalised coordination number distributions of clusters 1 (a-c), 2 (d-
f), and 3 (g-i) of the smallest disordered nanoparticle simulated at 723 K by the catalytic weighting
towards oxygen reduction reaction (a, d, g) , carbon monoxide oxidation reaction (b, e, h), aliphatic
ketone reduction reaction (c, f, i).
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[16] T. Schilling, S. Dorosz, H. J. Schöpe and G. Opletal, Journal of Physics: Condensed Matter, 2011,
23, 194120.

[17] A. Stukowski, Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045021.

[18] P. M. Larsen, arXiv, 2020, arXiv:2003.08879, 1–11.

[19] G. Opletal, J. Y. C. Ting and A. S. Barnard, NCPac, 2024, https://doi.org/10.25919/

tfv3-he58.

[20] E. A. Rakhmanov, E. B. Saff and Y. M. Zhou, Mathematical Research Letters, 1994, 1, 647–662.

S56

https://doi.org/10.25919/tfv3-he58
https://doi.org/10.25919/tfv3-he58


[21] L. V. D. Maaten and G. Hinton, Journal of Machine Learning Research, 2008, 9, 2579–2605.

[22] D. Kobak and G. C. Linderman, Nature Biotechnology 2021 39:2, 2021, 39, 156–157.

[23] R. Gove, L. Cadalzo, N. Leiby, J. M. Singer and A. Zaitzeff, Visual Informatics, 2022, 6, 87–97.

[24] A. Rodriguez and A. Laio, Science, 2014, 344, 1492–1496.

[25] G. Palshikar, Proceeding of the 1st International Conference on Advanced Data Analysis, Business
Analytics and Intelligence, 2009, pp. 1–13.

[26] P. J. Rousseeuw, Journal of Computational and Applied Mathematics, 1987, 20, 53–65.
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