## **Supporting Information**

## Elucidation of Ce/Zr ratio effects on the physical properties and catalytic performance of $CuO_x/Ce_yZr_{1-y}O_2$ catalysts

Mohammed Sifat<sup>1</sup>, Michal Luchowski<sup>1</sup>, Amol Pophali<sup>1</sup>, Wenhui Jiang<sup>1</sup>, Yunfan Lu<sup>1</sup>, Byeongseok Kim<sup>2</sup>, Gihan Kwon<sup>3</sup>, Kwangsuk Yoon<sup>4</sup>, Jihun Kim<sup>5</sup>, Kwangjin An<sup>5</sup>, Sang Eun Shim<sup>2</sup>, Hocheol Song<sup>4</sup>, Taejin Kim<sup>1,\*</sup>

<sup>1</sup> Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, U.S.A

<sup>2</sup> Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, South Korea

<sup>3</sup> National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, U.S.A

<sup>4</sup> Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea

<sup>5</sup> School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

\*Corresponding author

Prof. Taejin Kim; Email: taejin.kim@stonybrook.edu

Visible Raman spectroscopy:



Figure S1. Visible ( $\lambda = 532 \text{ nm}$ ) Raman spectroscopy for (a) Ce<sub>y</sub>Zr<sub>1-y</sub>O<sub>2</sub> (y = 1.0, 0.9, 0.6, 0.5, 0.0) supports; and (b) CuO<sub>x</sub>/Ce<sub>y</sub>Zr<sub>1-y</sub>O<sub>2</sub> (y = 1.0, 0.9, 0.6, 0.5, 0.0) catalysts.

XRD calculations:

To understand the crystalline structure of the supports and synthesized catalysts, XRD analysis was performed. The crystallite size and lattice parameters were calculated from the following equations:

$$Q = \frac{4 * \pi}{\lambda} * \sin\left(\frac{2\theta}{2}\right), \quad D = \frac{k * \lambda}{\beta * \cos(\theta)} \text{ (Scherrer equation)}$$
(5)

$$d_{hkl} = \frac{n * \lambda}{2 * sin^{[n]}(\theta)}, \quad a = \sqrt{h^2 + k^2 + l^2} \times d_{hkl} \tag{6}$$

where Q = collected scattered intensity,  $\lambda$  = wavelength of x-ray,  $\theta$  = diffraction angle, D = average crystallite size, k = constant or shape factor (set at 0.9),  $\beta$  = full width at half maximum (FWHM) of the peak, d<sub>hkl</sub> = d spacing of the crystal layers, n = constant (set at 1.0), and a = lattice parameter.



CO oxidation reaction tests performed on  $CuO_x/Ce_yZr_{1-y}O_2$  (y = 1.0, 0.9, 0.6, 0.5, 0.0) catalysts:

Figure S2.  $T_{20}$ ,  $T_{50}$ , and  $T_{90}$  for  $CuO_x/Ce_yZr_{1-y}O_2$  synthesized catalysts with varied CO:O<sub>2</sub> ratio.

|                                    | CO:O <sub>2</sub> (1:5) |                 |                 | CO:O <sub>2</sub> (1:1) |                 |                 | CO:O <sub>2</sub> (1:0.5) |                 |                 |
|------------------------------------|-------------------------|-----------------|-----------------|-------------------------|-----------------|-----------------|---------------------------|-----------------|-----------------|
| Sample                             | (°C)                    |                 |                 | (°C)                    |                 |                 | (°C)                      |                 |                 |
|                                    | T <sub>20</sub>         | T <sub>50</sub> | T <sub>90</sub> | T <sub>20</sub>         | T <sub>50</sub> | T <sub>90</sub> | T <sub>20</sub>           | T <sub>50</sub> | T <sub>90</sub> |
| CuO <sub>x</sub> /CeO <sub>2</sub> | 51.8                    | 72.4            | 86.0            | 66.2                    | 77.7            | 93.2            | 67.0                      | 78.9            | 94.7            |
| $CuO_x/Ce_{0.9}Zr_{0.1}O_2$        | 69.3                    | 78.6            | 101.7           | 78.1                    | 88.5            | 102.3           | 71.0                      | 83.6            | 100.5           |
| $CuO_x/Ce_{0.6}Zr_{0.4}O_2$        | 93.6                    | 103.7           | 135.4           | 91.4                    | 107.2           | 147.3           | 88.8                      | 100.9           | 127.0           |
| $CuO_x/Ce_{0.5}Zr_{0.5}O_2$        | 127.6                   | 140.1           | 186.2           | 98.7                    | 109.8           | 140.7           | 92.2                      | 104.3           | 141.0           |

Table S1.  $T_{20}$ ,  $T_{50}$ , and  $T_{90}$  for  $CuO_x/Ce_yZr_{1-y}O_2$  catalysts.

| CuO <sub>x</sub> /ZrO <sub>2</sub> | 141.5 | 153.6 | 200.3 | 133.3 | 148.6 | 175.1 | 132.4 | 145.1 | 162.0 |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                    |       |       |       |       |       |       |       |       |       |