Supplementary Material

Enhancing photocatalytic N₂ fixation under ambient conditions

through Zn vacancy-mediated engineering in Cd_{0.5}Zn_{0.5}S

Xiangju Ye,^a Qiaoqiao Zhang,^{a,b} Miaomiao Jiang,^a Zhenzhen Hui,^a Errui Wang,^a Shifu Chen^{b*}

^aCollege of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233030, P. R. China.

^bCollege of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, P. R. China.

*Corresponding author, Tel: +86-561-3806611, Fax: +86-561-3806611. E-mail: chshifu@chnu.edu.cn

Experimental section

Materials

All chemical reagents were purchased from Aladdin Reagent Company and used as received without additional purification or treatment. Homemade deionized water in our laboratory was used in all experiments.

Characterization of samples

X-ray diffraction patterns were performed on a Bruker D8 Advance diffractometer with Cu-Ka radiation (λ = 0.154056 nm) and a scanning speed of 10 °/min to obtain the crystal phase of the samples. The element contents of $Cd_{0.5}Zn_{0.5}S$ photocatalysts were detected by inductively coupled plasma-mass spectrometry (ICP-MS, Agilent 7700s). UV-Vis diffuse reflectance spectra (UV-Vis DRS) measurements were analyzed by a Shimadzu UV3600 UV-Vis-NIR spectrometer using BaSO₄ as a reflectance standard. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Kratos Axis Supra instrument using monochromatic Al Ka radiation (1486.7 eV, 150 W). The binding energy values were calibrated using the contaminant carbon (C1s = 284.6 eV). The Brunauer-Emment-Teller (BET) surface areas were carried out by N₂ adsorption-desorption at 77.3 K using a Micromeritics ASAP 2460 instrument. The morphologies and microstructures of the photocatalysts were examined using a JEOL7800 F scanning electron microscopy (SEM). Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were collected using a FEI-G2 transmission electron microscope with an acceleration voltage of 200 kV. Electron paramagnetic resonance (EPR) measurements were carried out on a Bruker model A300 spectrometer with a 300 W Xe lamp (Beijing China Education Au-light Co., Ltd) equipped with a cut-off filter ($\lambda \ge 420$ nm) as a visible light source. Electrochemical analysis was performed on a CHI 660D electrochemical workstation (Shanghai Chenhua) using a standard threeelectrode quartz cell. To prepare the working electrode, a catalyst powder was

deposited on the tin-doped tin oxide (FTO) substrate. 5 mg catalyst powder was suspended in 5 mL of deionized water and the mixture was sonicated for 30 minutes. Then, 200 µL or more of the slurry was coated on the FTO glass, which was used as a working electrode. A 300 W Xenon lamp (CEL-HXF300E7, Beijing China Education Au-light Co., Ltd) equipped with a 420 nm cutoff filter ($\lambda \ge 420$ nm) was applied as a visible light source. Mott-Schottky (M-S) experiments of the resulting samples were analyzed in the potential range of -1.0 to 0.1 V with the amplitude of 0.01 at a constant frequency of 1000 Hz, with the electrolyte system consisting of 0.1 M KCl and 0.1 M K₃[Fe(CN)₆]/K₄[Fe(CN)₆] solution. During the photocurrent experiments, the electrolyte system is composed of 0.2 M Na₂SO₄ solution.

Computational method

The study used VASP to perform density functional theory calculations with projector augmented wave ^[1,2]. Electron spin polarization were considered in all calculations. The Perdew-Burke-Ernzerhof functional was employed for exchange-correlation effects ^[3], while DFT+D3 was used for handling weak interactions ^[4]. The cut-off energy for the plane-wave basis was 450 eV. K-points were $2\times2\times2$ in the Brillouin zone. Energy and maximum stress were converged to 10^{-5} eV and 0.02 eV/Å, respectively.

Fig. S1. Constructed $Cd_{0.5}Zn_{0.5}S$ (a) and $V_{Zn}\mbox{-}Cd_{0.5}Zn_{0.5}S$ (b) crystal structures.

Fig. S2. The standard calibration curve for colorimetric $\rm NH_4^+$ assay obtained by a Nessler's reagent colorimetric method.

photocatalyst	Light source	Catalyst	ammonia	Reference
	and wavelength	dosage	evolution	
Cd _{0.5} Zn _{0.5} S	300 W Xe lamp (λ≥ 420 nm)	30 mg	1465 μ mol·L ⁻¹ ·h ⁻¹	This work
Ni2P/Cd0.5Zn0.5S	300 W Xe lamp (λ≥ 400 nm)	20 mg	101.5 μmol·L ⁻¹ ·h ⁻¹	[5]
V_{Zn} - $Zn_3In_2S_6$	300 W Xe lamp (λ≥ 420 nm)	30 mg	$88.8 \text{ mg} \cdot \text{L}^{-1} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$	[6]
Ru/BiOBr-NF	300 W Xe lamp (λ= 200-800 nm)	10 mg	$121.97 \ \mu mol \cdot g^{-1} \cdot h^{-1}$	[7]
MIL-68(InFe) MOF	300 W Xe lamp (λ≥ 320 nm)	5 mg	$30.8 \ \mu mol \cdot g^{-1} \cdot h^{-1}$	[8]
NVs-g-C ₃ N ₄	300 W Xe lamp (λ> 420 nm)	50 mg	1240 μ mol \cdot g _{cat} ⁻¹ \cdot h ⁻¹	[9]
AuRu _X	300 W Xe lamp (λ= 200-800 nm)	0.2 mg	$101.4 \ \mu mol \cdot g^{-1} \cdot h^{-1}$	[10]
Bi ₅ O ₇ Br-NT	300 W Xe lamp (λ> 400 nm)	25 mg	$1.38 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[11]
TiO ₂ nanosheets	300 W Xe lamp (λ= 200-800 nm)	20 mg	78.9 μ mol \cdot g ⁻¹ \cdot h ⁻¹	[12]
Mo-doped W ₁₈ O ₄₉	300 W Xe lamp (λ> 400 nm)	10 mg	195.5 μ mol \cdot g _{cat} ⁻¹ ·h ⁻¹	[13]
MoS ₂ /UiO-66(SH) ₂	visible light (λ> 400 nm)	25 mg	54.08 μ mol·g ⁻¹ ·h ⁻¹	[14]
COF4-Au	300 W Xe lamp	10 mg	427.9±18.7 μmol·g ⁻¹ ·h ⁻¹	[15]
g-C ₃ N ₄ -TiO ₂	300 W Xe lamp (λ> 420 nm)	50 mg	~1.06 mmol \cdot g ⁻¹ \cdot h ⁻¹	[16]
$Cs(6)Ru(2)@ZrO_2$	300 W Xe lamp	50 mg	5.1 mmol \cdot g _{cat} ⁻¹ ·h ⁻¹	[17]

Table S1 The comparison the photocatalytic performance in N_2 fixation of various materials with our prepared $Cd_{0.5}Zn_{0.5}S$ samples.

Fig. S3. XRD patterns (a) and EPR spectra (b) of the $Cd_{0.5}Zn_{0.5}S$ sample synthesized at 200 °C before and after visible light reaction.

Reference

[1] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54, 11169.

[2] P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B, 1994, 50, 17953-17979.

[3] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77, 3865.

[4] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 2010, 132, 154104.

[5] L. Ye, C. Han, Z. Ma, Y. Leng, J. Li, X. Ji, D. Bi, H. Xie, Z. Huang, Ni₂P loading on Cd_{0.5}Zn_{0.5}S solid solution for exceptional photocatalytic nitrogen fixation under visible light, Chem. Eng. J., 2017, 307, 311-318.

[6] H. Han, Y. Yang, J. Liu, X. Zheng, X. Wang, S. Meng, S. Zhang, X. Fu, S. Chen, Effect of Zn Vacancies in Zn₃In₂S₆ Nanosheets on boosting photocatalytic N₂ fixation, ACS Appl. Energy Mater., 2020, 3, 11, 11275-11284.

[7] Y. Xia, X. Xia, L. Chen, R. Liang, G. Yan, S. Liang, O defect anchored Ru on BiOBr with nanoconfined structure for catalytic N_2 fixation, Appl. Catal. B Environ. Energy, 2024, 349, 123859.

[8] C. Liu, M. Chen, Y. Chen, Q. Chen, J. Wu, S. Lin, L. Wu, J. C. Yu, Bimetallic MIL-68(InFe) MOF nanorods for biomimetic photocatalytic N_2 fixation, Chem. Eng. J., 2024, 498, 155646.

[9] G. Dong, W. Ho, C. Wang, Selective photocatalytic N_2 fixation dependent on g- C_3N_4 induced by nitrogen vacancies, J. Mater. Chem. A, 2015, 3, 23435-23441.

[10] C. Hu, X. Chen, J. Jin, Y. Han, S. Chen, H. Ju, J. Cai, Y. Qiu, C. Gao, C. Wang, Z. Qi, R. Long, L. Song, Z. Liu, Y. Xiong, Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions, J. Am. Chem. Soc., 2019, 141, 7807-7814.

[11] S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye, Light-switchable oxygen vacancies in ultrafine Bi₅O₇Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater., 2017, 29 1701774.

[12] Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. Waterhouse, L. Wu, C. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO₂ nanosheets to boost photocatalytic nitrogen fixation up to 700 nm, Adv. Mater., 2019, 31, 1806482.

[13] N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, Refining defect states in $W_{18}O_{49}$ by Mo doping: A strategy for tuning N₂ activation towards solar-driven nitrogen fixation, J. Am. Chem. Soc., 2018, 140, 9434-9443.

[14] Q. Li, Y. Shi, Z. Wang, C. Liu, J. Bi, J. Yu, L. Wu, Nitrogen activation and surface charge regulation for enhancing the visible-light-driven N_2 fixation over $MoS_2/UiO-66(SH)_2$, J. Colloid Interface Sci., 2023, 652, 1568-1577.

[15] T. He, Z. Zhao, R. Liu, X. Liu, B. Ni, Y. Wei, Y. Wu, W. Yuan, H. Peng, Z. Jiang, Y. Zhao, Porphyrin-based covalent organic frameworks anchoring Au single atoms for photocatalytic nitrogen fixation, J. Am. Chem. Soc., 2023, 145, 6057-6066.

[16] N. Kwon, J. Park, X. Jin, S. Kim, H. Kim, S. Hwang, Defect-regulated twodimensional superlattice of holey $g-C_3N_4$ -TiO₂ nanohybrids: Contrasting influence of vacancy content on hybridization impact and photocatalyst performance, ACS Nano, 2023, 17, 23732-23745.

[17] Y. Peng, A. Melillo, R. Shi, A. Forneli, A. Franconetti, J. Albero, H. García, Light-assistance in nitrogen fixation to ammonia by highly dispersed Cs-promoted Ru clusters supported on ZrO₂, Appl. Catal. B: Environ., 339 (2023) 123143.