Supporting Information

Mechanistic insights into an enantioselective synthetic strategy for 1,3-disubstituted planar chiral ferrocenes

Feiyun Jia*a, Chenghua Zhanga, Yongsheng Yanga, Xueting Zhengb and Mingsong Shi*b

^{a.} School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China. E-mail: jiaFY@nsmc.edu.cn

^{b.} NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, 621099, China. E-mail: therotyonth@163.com

Table of Contents

I. Comparison of energies of iron-containing species in low- or high- spin states	S3
II. NPA charge analysis for ts7 and ts7R	
	S4
III. NCI analysis for ts7 and ts7R	S5

I. Comparison of energies of iron-containing species in low- or high- spin states

Table S1. Comparison of the calculated free energies of several important iron-containing species in different spin states. All calculations were performed at the PBE0-D3(BJ)/def2-TZVP-SMD//PBE0-D3(BJ)/def2-SVP-gas level of theory. Calculated energies at low spin (spin=1) were used as the relative zero-point energy for all species. The energies are all in kcal/mol.

	5	10	12	15	23
spin=1	0.0	0.0	0.0	0.0	0.0
spin=3	18.6	25.6	11.4	18.4	13.8
spin=5	118.8	3.1	25.3	36.5	0.7

ŧ

Fig. S1 NPA charge analysis for ts7 and ts7R (a.u.).

III. NCI analysis for ts7 and ts7R

Fig. S2 NCI analysis for ts7 and ts7R.