Electronic Supplementary Information for

Highly efficient and selective aqueous phase hydrogenolysis of furfural to 1,5-pentanediol using bimetallic Ru-SnO_x/ γ -Al₂O₃ catalysts⁺

Rodiansono,*^{*a,bc*} Atina Sabila Azzahra,^{*b*} Uripto Trisno Santoso,^{*a,b*} Edi Mikrianto,^{*a,b*} Eka Suarso,^{*c*} Kiky

Corneliasari Sembiring,^d Indri Badria Adilina,^d Gagus Ketut Sunnardianto,^eAhmad Afandi^f

 ^a Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, Indonesia 70714. Telp. / Fax: +62 511 477 3112.
^b Inorganic Materials & Catalysis (IMCat), Catalysis for Sustainable Energy & Environment (CATSuRe), Lambung Mangkurat University.
^c Department of Physics, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, Indonesia.
^d Research Centre for Advanced Chemistry, BRIN, Puspiptek Serpong, Tangerang.
^e Research Centre for Quantum Physics, BRIN, Puspiptek Serpong, Tangerang.
^f Research Centre for Advanced Materials, BRIN, KST BJ Habibie Serpong, Tangerang.

Contents:

- 1) XRD patterns of the hydrargillite-derived γ -Al₂O₃-500, and three types commercially available of Cariact- γ -Al₂O₃(E) (Evonik); (γ -Al₂O₃(H)(HWNANO), and - γ -Al₂O₃(M) (Merck) (**Fig. S1**).
- 2) XRD patterns of unreduced (as-prepared) and reduced Ru-(1.30)Sn/ γ -Al₂O₃(E) samples (**Fig. S2**).
- (a) N₂-adsorption-desoprtion profiles and (b) pore sizes distribution determined by DFT method for four types of gamma-alumina-based supported Ru-(1.30)Sn catalysts after reduction with H₂ at 400 °C for 2 h (Fig. S3).
- 4) NH₃-TPD profiles of Ru-(x)Sn/ γ -Al₂O₃(E) and deconvoluted NH₃-TPD spectra of Ru-(0.65)Sn/ γ -Al₂O₃(E), Ru-(1.30)Sn/ γ -Al₂O₃(E), and Ru-(2.15)Sn/ γ -Al₂O₃(E) catalysts (**Fig. S4**).
- 5) XPS spectra Al 2p for fresh and spent $Ru-(1.30)Sn/g-Al_2O_3(E)$ samples (Fig. S5).
- 6) GC chart (chromatogram) of reaction mixture obtained from the reaction of FFald in 1,4-dioxane using the most effective Ru-(1.30)Sn/ γ -Al₂O₃ catalyst. (**Fig. S6**)
- 7) Photo images of reaction mixtures obtained after the second reaction run (Fig. S7).
- 8) ATR-IR spectra of recovered Ru-(1.30)Sn/ γ -Al₂O₃(E) after the second reaction run (**Fig. S8**).
- ICP analysis of typical Ru-(1.30)Sn/g-Al2O3 (E) catalyst before and after catalytic reactions (Table S1.)

Fig. S1 XRD patterns of the hydrargillite-derived γ -Al₂O₃-500, and three types commercially available of Cariact- γ -Al₂O₃(E) (Evonik); (γ -Al₂O₃(H)(HWNANO), and - γ -Al₂O₃(M) (Merck).

Fig. S2 XRD patterns of unreduced (as-prepared) and reduced Ru-(1.30)Sn/ γ -Al₂O₃(E) samples.

Fig. S3 (a) N₂-adsorption-desoprtion profiles and (b) pore sizes distribution determined by DFT method for four types of gamma-alumina-based supported Ru-(1.30)Sn catalysts after reduction with H₂ at 400 $^{\circ}$ C for 2 h.

Fig. S4 NH₃-TPD profiles of Ru-(x)Sn/ γ -Al₂O₃(E) and deconvoluted NH₃-TPD spectra of Ru-(0.65)Sn/ γ -Al₂O₃(E), Ru-(1.30)Sn/ γ -Al₂O₃(E), and Ru-(2.15)Sn/ γ -Al₂O₃(E) catalysts.

Fig. S5 XPS spectra Al 2p for fresh and spent $Ru-(1.30)Sn/g-Al_2O_3(E)$ samples.

Fig. S6 GC chart (chromatogram) of reaction mixture obtained from the reaction of FFald in 1,4-dioxane using the most effective Ru-(1.30)Sn/ γ -Al₂O₃ catalyst. Reaction conditions: catalyst, 50 mg; substrate (FFald), 2.0 mmol; solvent, 1,4-dioxane; 3.0-3.5 ml; initial H₂ pressure, 30 bar; 180 °C, 3 h.

Fig. S7 Photo images of reaction mixtures obtained after the third reaction run using Ru-(1.30)Sn/ γ -

 AI_2O_3 catalyst.

Fig. S8 ATR-IR spectra of recovered Ru-(1.30)Sn/ γ -Al₂O₃(E) after the second reaction run.

Entry	Catalyst	Bulk composition (mmol g ⁻¹)		
Liitiy		Sn/Ru	Ru	Sn
1	Ru-(1.30)Sn/γ–Al2O3 (Ε)	0.30	3.70	1.11
2 ^b	Ru-(1.30)Sn/γ–Al2O3 (E) (recovered	0.28	3.67	1.02

Table S1. ICP analysis of typical Ru-(1.30)Sn/g-Al2O3 (E) catalyst before and after catalytic reactions

^a Determined by ICP-AES.

^b Recovered catalyst after reusability test.