Supplementation (St) for (E3t) sis Studysis & Teche & The Royal Society of Chemistry 2024

Supporting Information

Au Species Supported on Nitrogen-rich Porous Organic Polymers for CO₂ Hydrogenation to Formic Acid

Huixin Yan, Xingyan Wang, Xiaoyu Liang, Xinxin Zhang, LongFei Liu, Min Ji, Min Wang* and Xinkui Wang*

School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.

*Corresponding author: Xinkui Wang: wangxinkui@dlut.edu.cn; Min Wang: wangmin@dlut.edu.cn

Experimental Section
Synthesis of Pd/Trz-DETA, Ag/Trz-DETA and Ru/Trz-DETA1
Quantitative analysis1
Characterization of the catalysts1
Supporting Figures1
Fig. S1 Tautomeric forms of Trz-TETA1
Fig. S2 EDX spectra analysis and images of (a) Au/Trz-DETA and (b) Au/Trz-TEPA with the
corresponding element mapping signals of C, N and Au
Fig. S3 (a) XRD patterns of Au/Trz-DETA catalyst with different Au loading amounts. (b) XPS
survey spectra of Au/Trz-DETA, Au/Trz-TETA and Au/Trz-TEPA
Fig. S4 (a) ¹ H NMR spectra of the reaction solution (b) GC spectra of gas after reaction
Fig. S5 (a)Reactivity comparison of Trz-DETA loading with different metals.(1.5 wt% metal
loadings) (b) Catalytic activity of Au/Trz-DETA catalyst with different Au loadings4
Fig. S6 (a) Catalyst recycling of Au/Trz-TETA. (b) HAADF-STEM image of Au/Trz-DETA after
cycling five times4
Fig. S7 (a) Reactivity comparison of various solvents of Au/Trz-DETA and Au/Trz-TEPA. (b)
Catalytic activity of Au/Trz-TETA at different volume ratios of H_2O and methanol (Vtotal = 5
mL)5
Fig. S8 CO ₂ adsorption and activation on Au/Trz-TETA catalysts5
Supporting Tables
Table S1 The actual Au loadings of various catalysts determined by ICP-AES
Table S2 Textural parameters of Trz-DETA, Trz-TETA, Trz-TEPA and Au/Trz-TETA6
References

Experimental Section

Synthesis of Pd/Trz-DETA, Ag/Trz-DETA and Ru/Trz-DETA

The Pd/Trz-DETA catalyst was prepared with a NaBH₄ wet chemical reduction method. Typically, 0.3 g of Trz-DETA was dispersed in 100 mL of ethanol and ultrasounded for 15 min. Then a solution of aqueous PdCl₂ (1.0 g/50 mL, 0.38 mL) in 100 mL of ethanol was added rapidly to the above mixture at 80 °C, followed by stirring for 30 min. A 14-fold excess of NaBH₄ was added and the mixture was stirred continuously for 2 h at 80 °C. After the reaction, the product was collected by filtration and washed several times with water and ethanol. Finally, Pd/Trz-DETA was obtained by vacuum drying at 60 °C. Ag/Trz-DETA and Ru/Trz-TEPA were synthesized by a similar method as that of Pd/Trz-TETA, and were obtained using aqueous AgNO₃ solution (1.0 g/50 mL, 0.35 mL)and aqueous RuCl₃ solution (1.0 g/50 mL, 0.52 mL), respectively.

Quantitative analysis

Formic acid yield calculation formula:

$$\operatorname{mi}(g) = \frac{As \times Ii \times Mi}{Ai \times Is \times Ms} \times \operatorname{ms} \qquad \text{TON} = \frac{N_{HCOOH}}{N_{Au}}$$

Where m_i is the yield of formic acid, m_s is the mass of DMSO, A_s and A_i are the H atoms numbers of DMSO and formic acid, I_s and I_i are the integral areas of DMSO and formic acid, M_s and M_i are the molar mass of DMSO and formic acid, and N_{HCOOH} and N_{Au} are the molar quantity formic acid and Au.

Characterization of the catalysts

Supporting Figures

Fig. S1 Tautomeric forms of Trz-TETA.

C] 	Au Au 	···1····1· 20 25	Map Sum S	pectrum 1 · · · · · 1 25 keV
Element	Line Type	k factor	Absorption Correction	Wt%	Wt% Sigma
С	K series	2.47155	1	83.71	0.46
N	K series	3.10261	1	15.31	0.43
Au	L series	2.81409	1	0.98	0.18
Total:				100	
Element C N Au Total:	Line Type K series K series L series	k factor 2.47155 3.10261 2.81409	Absorption Correction 1 1 1 1	Map Sum Sp 0 3 W1% 65.17 33.88 0.96 100 100	wtv= Wt% Sigma 0.43 0.13
Element C N Au	Line Type K series L series	k factor 2.47155 3.10261 2.81409	Absorption Correction 1 1 1	Map Sum? 30 1 1 1 1 1 6.99 1.04	spectrum 35 keV Sigma 0.43 0.4 0.2
	Element C N Au Total: Element C N Au Total:	Element Line Type C K series Au L series Total: Element Line Type C K series Au L series C K series N K series Au L series C K series Au L series C K series Au L series Au L series Au L series Au L series	Element Line Type k factor C K series 2.47155 N K series 3.10261 Au L series 2.81409 Total: Element Line Type k factor C K series 2.47155 N K series 3.10261 Au L series 2.81409 Total: Element Line Type k factor C K series 2.47155 N K series 3.10261 Au L series 2.81409 Total: Element Line Type k factor C K series 2.47155 N K series 3.10261 Au L series 3.10	Element Line Type k factor Correction C K series 2.47155 1 N K series 3.10261 1 Au L series 2.81409 1 Total: $$	Image: second

Fig. S2 EDX spectra analysis and images of (a) Au/Trz-DETA and (b) Au/Trz-TEPA with the corresponding element mapping signals of C, N and Au.

Fig. S3 (a) XRD patterns of Au/Trz-DETA catalyst with different Au loading amounts. (b) XPS survey spectra of Au/Trz-DETA, Au/Trz-TETA and Au/Trz-TEPA.

Fig. S4 (a) ¹H NMR spectra of the reaction solution (b) GC spectra of gas after reaction

Fig. S5 (a)Reactivity comparison of Trz-DETA loading with different metals.(1.5 wt% metal loadings) (b) Catalytic activity of Au/Trz-DETA catalyst with different Au loadings.

Fig. S6 (a) Catalyst recycling of Au/Trz-TETA. (b) HAADF-STEM image of Au/Trz-DETA after cycling five times.

Fig. S7 (a) Reactivity comparison of various solvents of Au/Trz-DETA and Au/Trz-TEPA. (b) Catalytic activity of Au/Trz-TETA at different volume ratios of H_2O and methanol (Vtotal = 5 mL).

$$RR'NH + CO_{2} \longrightarrow RR'N^{+}H^{-+}COO^{-}$$

$$RR'N^{+}H^{-+}COO^{-} + OH^{-} \longrightarrow RR'NCOO^{-} + H_{2}O$$

$$RR'NH \longrightarrow RR'NCOO^{-}N^{+}H_{2}RR'$$

Fig. S8 CO₂ adsorption and activation on Au/Trz-TETA catalysts

Supporting Tables

Catalyst	Theory (wt. %)	Actual (wt. %)
 Au/Trz-DETA	0.50	0.53
	1.00	1.02
	1.50	1.47
	2.00	2.08
Au/Trz-TETA	1.00	0.98
Au/Trz-TEPA	1.00	0.96

Table S1 The actual Au loadings of various catalysts determined by ICP-AES

	$S_{BET}/m \cdot g^{-1}$	D _{AVG} /nm	D _{MODE} /nm	$V_{TOTAl}/cm^3 \cdot g^{-1}$
Trz-DETA	52	24.40	3.714	0.30
Trz-TETA	47	26.96	4.448	0.33
Trz-TEPA	43	35.68	32.26	0.37
Au/Trz-TETA	52	34.06	3.308	0.43

Table S2 Textural parameters of Trz-DETA, Trz-TETA, Trz-TEPA and Au/Trz-TETA

References

- 1 M. Niksefat, J. Rahimi, A. Maleki and A. S. Nia, *Algal Res.*, 2023, 70, 103003.
- 2 W. Zhan, Y. Shu, Y. Sheng, H. Zhu, Y. Guo, L. Wang, Y. Guo, J. Zhang, G. Lu and S. Dai, *Angewandte Chemie-International Edition*, 2017, **56**, 4494-4498.