Suplementary information for "Transition metal atoms embedded in monolayer $C_{13}N_3$ as OER/ORR bifunctional electrocatalysts"

Xiaoxue Yu¹, Junkai Xu¹, Yunhao Wang¹, Jianjun Fang¹,^{*} Xianfang Yue²,[†] Breno R. L. Galvão³,[‡] and Jing Li^{1§} ¹School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China

²Department of Physics and Information Engineering, Jining University, Qufu 273155, China and

³Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG,

Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil

(Dated: December 25, 2024)

^{*} Corresponding author: jian-junfang@163.com

[†] Corresponding author: xfyuejnu@jnxy.edu.cn

[‡] Corresponding author: brenogalvao@gmail.com

[§] Corresponding author: jli@qfnu.edu.cn

TABLE S1.	The total ene	ergy of TM-C ₁₃ N ₅	$(E_{TM-C_{13}N_3}), t$	total energy	of $C_{13}N_3$	with metal	vacancies($E_{C_{13}N_3}$),	total energy of
the isolated r	metal atoms	$(E_{TM-single})$, and	binding energy	(E_{bind}) . Al	l values ai	re in eV.		

	$E_{\rm TM-C_{13}N_3}$	$\mathrm{E}_{\mathrm{C}_{13}\mathrm{N}_3}$	$\mathrm{E}_{\mathrm{TM-single}}$	$\mathrm{E}_{\mathrm{bind}}$
Cr	-295.05	-284.95	-5.45	-4.65
Mn	-294.71	-284.95	-5.15	-4.61
Fe	-292.93	-284.95	-3.30	-4.68
Co	-291.37	-284.95	-1.73	-4.705
Ni	-290.32	-284.95	-0.29	-5.08
Cu	-288.82	-284.95	-0.25	-3.63
Ru	-292.52	-284.95	-2.00	-5.57
Rh	-291.46	-284.95	-1.26	-5.25
Pd	-289.94	-284.95	-1.48	-3.51
Ag	-288.29	-284.95	-0.20	-3.14
Os	-293.06	-284.95	-2.90	-5.21
Ir	-291.91	-284.95	-1.50	-5.46
Pt	-289.79	-284.95	-0.50	-4.34
Au	-287.56	-284.95	0.19	-2.42

	$\Delta G_{*_{OH}}$	ΔG_{*_O}	$\Delta G_{*_{OOH}}$
Cr	0.20	1.43	3.49
Mn	0.00	2.19	3.37
Fe	0.03	1.43	3.29
Со	0.07	2.37	3.35
Ni	0.44	2.51	3.84
Cu	0.89	3.17	4.19
Ru	0.44	0.99	3.43
Rh	0.50	1.67	3.47
Pd	1.30	3.55	4.76
Ag	2.36	4.52	5.11
Os	-0.14	0.03	2.95
Ir	0.35	1.31	3.48
Pt	0.83	2.27	3.77
Au	1.59	3.52	4.76

TABLE S2. The adsorption energies (in eV) of *OH, *O and *OOH ($\Delta G_{*_{OH}}, \Delta G_{*_{O}}$ and $\Delta G_{*_{OOH}}$).

	$\Delta G_1(eV)$	$\Delta G_2(eV)$	$\Delta G_3(eV)$	$\Delta G_4(eV)$	$\eta_{\rm OER}({\rm V})$	$\eta_{\rm ORR}({\rm V})$
Cr	0.20	1.23	2.06	1.43	0.83	1.03
Mn	0.00	2.19	1.18	1.55	0.96	1.23
Fe	0.03	1.40	1.86	1.63	0.63	1.20
Co	0.07	2.30	0.98	1.57	1.07	1.16
Ni	0.44	2.06	1.34	1.08	0.74	0.79
Cu	0.89	2.29	1.01	0.73	1.06	0.50
Ru	0.44	0.55	2.44	1.49	1.21	0.79
Rh	0.50	1.16	1.80	1.45	0.57	0.73
Pd	1.30	2.25	1.21	0.16	1.02	1.07
Ag	2.36	2.16	0.59	-0.19	1.13	1.42
Os	-0.14	0.17	2.92	1.97	1.69	1.37
Ir	0.35	0.96	2.17	1.44	0.94	0.88
Pt	0.83	1.44	1.50	1.15	0.27	0.39
Au	1.59	1.93	1.24	0.16	0.70	1.07

TABLE S3. The free energy changes of each elementary step (ΔG_1 , ΔG_2 , ΔG_3 and ΔG_4) and the overpotential of OER and ORR (η_{OER} and η_{ORR}).

Supported TM

FIG. S1. $\mathrm{E}_{\mathrm{cluster}}$ energy calculated on TM-C_{13}N_3 system.

FIG. S2. Reaction pathways for O2 dissociation on C13N3 surfaces anchored by Pt atoms. IS, TS, FS represent the initial, transition, and final state along the reaction path.

FIG. S3. -COHP of Cr,Mn,Fe,Co,Ni,Cu,Ru,Rh,Pd,Ag,Ir and Au-C₁₃N₃ with the reaction intermediate $^{*}OH$, where the Fermi level is set to zero.