Supporting information

The effects of SO₂ impurities on CO₂ electroreduction on bare silver and SiO₂ coated silver in different cell geometries

Ming Li, *a Shilong Fu,^b Ruud Kortlever^b and J.Ruud van Ommen *a

Table of contents

Figure S1. TG/DTA analysis of the original Ag/CB catalyst	.2
Figure S2. Growth per ALD cycle of SiO_2 deposition and Si 2p XPS spectra of the Ag/CB catalyst	.2
Figure S3. Pure Ag nanoparticles FE	.3
Figure S4. Cyclic voltammetry tests under various gas supplies	.3
Figure S5. XPS area scan of the Ag/CB catalyst tested at H-cell.	.4
Method to calculate the SO_2 concentration required to get SO_2 reduction	.5
Figure S6. CV testing	.5
Figure S7. A visual representation of both cell geometries6 Figure S8. Faradaic efficiency of the original Ag/CB catalyst tested at MEA	l 6
Figure S9. Salt formation after 50 minutes CP testing	.7
Figure S10. CP testing of the uncoated Ag/CB catalyst with pure CO ₂ gas feed	.7
Table S1. ALD experimental conditions	.8
Table S2. Gas recipes for H-cell testing and MEA testing.	.8

Figure S1. TG/DTA analysis of the original Ag/CB catalyst.

Figure S2. (a) Growth per ALD cycle of SiO_2 deposition on the surface of Ag/CB catalyst. (b) Si 2p XPS spectra of the Ag/CB catalyst with 8 cycles of SiO_2 coating.

Figure S3. (a) Pure Ag nanoparticles drop casted on glassy carbon electrode tested at H-cell. (b) Ag nanoparticles mixed with carbon black to mimic the Ag/CB catalyst drop casted on glassy carbon electrode tested at H-cell. (c) Partial current density of CO and H₂ from pure Ag nanoparticles and Ag nanoparticles mixed with carbon black.

Figure S4. Cyclic voltammetry tests under various gas supplies: pure Ar, CO_2 with 1000ppm SO_2 and pure CO_2

Figure S5. XPS area scan of the Ag/CB catalyst tested at H-cell. (a) uncoated Ag/CB catalyst after 1h CO₂ electrolysis at H-cell with pure CO₂. (b) uncoated Ag/CB catalyst after 1h CO₂ electrolysis at H-cell with 1000 ppm SO₂. (c) 8 cycles SiO₂ coated Ag/CB catalyst after 1h CO₂ electrolysis at H-cell with 1000 ppm SO₂.

Method to calculate the SO₂ concentration required to get SO₂ reduction

$$\begin{split} FE_{missing} &= FE_{in\ total\ (Ag/CB\ with\ pure\ CO_{2}\ feed\)} - FE_{in\ total\ (Ag/CB\ with\ CO_{2}\ +\ SO_{2}\ feed)} \\ FE_{in\ total} &= FE_{H_{2}} + FE_{CO} \\ I_{missing} &= FE_{missing} \times I_{in\ total} \\ I_{SO_{2}\ RR\ partial\ current} &= I_{missing} \end{split}$$

$$Required flow rate_{SO_2} = \frac{I_{SO_2 RR partial current} \times 6.242 \times 10^{18}}{N_{number of electrons} \times N_A} \times V_{25^{\circ}C}$$

 $V_{25^{\circ}C} = \frac{nRT_{25^{\circ}C}}{P} = 24.465L/mol$

$$N_A = 6.02 \times 10^{23} \, mol^{-1}$$

 $N_{number of electrons} = 6$

 $Required \ C_{concentration} \ SO_2 = \frac{Required \ flow \ rate_{\ SO_2}}{Flow \ rate_{in \ total}} \times 100\% \times \frac{1 \times 10^6 \ ppm}{\%}$

Figure S6. CV testing of the uncoated Ag/CB catalyst and the catalyst with 4 cycles of SiO_2 coating, tested at MEA reactor.

Figure S7. A visual representation of both cell geometries. (a) H-cell (b) MEA

Figure S8. Faradaic efficiency of the original Ag/CB catalyst tested at MEA reactor at 100 mA/cm2 current density in a 1 M KHCO3 electrolyte with pure CO2 feed for 50 minutes.

Figure S9. Salt formation after 50 minutes CP testing of the uncoated Ag/CB catalyst at 100 mA/cm².

Figure S10. CP testing of the uncoated Ag/CB catalyst with pure CO_2 gas feed at 100mA/cm².

Material	Reactant (T,°C)	Co-reactant (T,°C)	Type of reactor	T _{reaction} (°C)	Pulse and Purge Time (s) (SiCl ₄ -N ₂ -H ₂ O- N ₂)	Flow rate(L/min)
SiO ₂	SiCl ₄ (RT)	H₂O vapor (RT)	Flat substrate reactor	100	15-60-30-60	0.5-0.5-0.5- 0.5
SiO ₂	SiCl ₄ (RT)	H₂O vapor (RT)	Fluidized bed reactor	100	60-150-60-150	0.5-2-2-2

Table S1. ALD experimental conditions. (RT indicates room temperature)

		Gas flow rate (sccm)			
Gas composition	Types of		CO ₂ + 100 ppm	CO ₂ + 10000	
	reactors	CO ₂	SO ₂	ppm SO ₂	
CO ₂	H-cell	8	0	0	
CO_2 + 10 ppm SO_2	H-cell	7.2	0	0.8	
CO ₂ + 100 ppm SO ₂	H-cell	0	8	0	
CO ₂ + 1000 ppm SO ₂	H-cell	7.2	0	0.8	
CO ₂	MEA cell	20	0	0	
CO ₂ + 1000 ppm SO ₂	MEA cell	18	0	2	

Table S2. Gas recipes for H-cell testing and MEA testing