Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

For

Revisiting the Oxygen Reduction Reaction Activity of Two-

Dimensional TM-C₂N Electrocatalysts via Constant-Potential Density

Functional Theory: Crucial Impact of Spin State and Coordination

Yashi Chen^{1,2,4}, Mingyuan Yu*^{1,2,3}, Erjun Kan^{1,2,3}, Si Lan⁴, Cheng Zhan^{*1,2,3}

¹Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing 210094

²MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China

³School of Physics, Nanjing University of Science and Technology, Nanjing 210094,

China

⁴School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Corresponding author: czhan@njust.edu.cn

Micro-kinetic method:

We assume that the reaction occurs on both the bare $TM-C_2N$ and $TM-C_2N$ with a single coordination. The reaction rate at the site is governed by the rate-limiting step. Thus, the reaction rate can be expressed as:

$$R(U) = \sum k_i(U) [C_i(U)] \#(S1)$$
$$k_i(U) = A_i \exp(\frac{-E_{a,i}}{k_B T}) \exp\left(\frac{-G_i^b(U)}{k_B T}\right) \#(S2)$$

R(U) is the total reaction rate, $C_i(U)$ is the concentration of various possible active sites. A_i , $E_{a,i}$ are effective pre-exponential factor and activation energy, which can be estimated to be 0.26 eV and 1.23×10^9 s⁻¹.^{1, 2} k_B is Boltzmann constant. $k_i(U)$ are the reaction rates in corresponding active sites. This can be determined using Eq. S2, derived from classical transition state theory. Additionally, the concentration $G_i^b(U)$ is balanced based on the total site concentration, as given by the following formula: $[M] = \sum [C_i(U)] \#(S3)$

where M is total concentration of active sites, which can be computed by active sites divided by surface area. Besides, $C_i(U)$ follow the equilibrium constants:

$$K_i(U) = \frac{C_i(U)}{C_0(U)} = \exp\left(\frac{-G_i^f(U)}{kT}\right) \#(S4)$$

 $C_0(U)$ is concentration of TM-C₂N(IS), the $G_i^b(U)$ is formation energy of various active site relative to TM-C₂N(IS). Finally, the current density can be calculated as:

$$j(U) = \frac{nFR(U)}{N_A} \#(S5)$$

Where n is the charge transfer of reaction, F is Faraday constant, and N_A is the Avogadro constant. It should be noted that there is a limit to the reaction rate of ORR due to the solubility limit of oxygen.³ The reaction rate changes to:

$$k_i(U) = \exp\left(\frac{-E_{a,i}}{k_B T}\right) \min[in](A_i \exp\left(\frac{-G_i^b(U)}{k_B T}\right), v_{0_2}) \#(S6)$$

The values of v_{0_2} is taken as $1 \times 10^8 \, \text{s}^{-1.4}$

Table S1. Spin state and parameters of free energy fitting for each ORR intermediate.

model	Spin	C (e/V)	U ₀ (V/SHE)	$E_0 (eV)$	E_{ZPE} -T*S (eV)
TiC ₂ N*	1	2.39	-2.86	-662.71	0.22
TiC ₂ N*OOH	1/2	2.87	-2.68	-678.80	0.61
TiC2N*O	0	2.38	-2.71	-670.63	0.29
TiC ₂ N*OH	1/2	2.32	-2.79	-674.50	0.52
TiC ₂ NOH*OOH	0	2.45	-2.70	-690.38	0.92
TiC ₂ NOH*O	0	2.59	-2.48	-683.08	0.58
TiC ₂ NOH*OH	0	2.48	-2.67	-686.34	0.84
VC ₂ N*	3/2	2.78	-2.63	-663.18	0.25
VC ₂ N*OOH	1	2.86	-2.58	-679.60	0.54
VC2N*O	1/2	2.97	-2.51	-671.26	0.30
VC ₂ N*OH	1	3.05	-2.55	-675.22	0.54
VC ₂ NOH*OOH	1	2.64	-2.52	-691.68	0.87
VC ₂ NOH*O	1/2	2.58	-2.49	-683.48	0.60
VC ₂ NOH*OH	1	2.45	-2.56	-687.11	0.84

CrC ₂ N*	2	2.32	-2.00	-659.70	0.23
CrC ₂ N*OOH	3/2	2.19	-1.84	-675.60	0.61
CrC2N*O	1	2.61	-1.65	-666.81	0.28
CrC ₂ N*OH	3/2	2.19	-1.79	-671.42	0.54
CrC ₂ NOH*OOH	3/2	2.43	-1.70	-686.82	0.86
CrC ₂ NOH*O	1	2.70	-1.61	-677.99	0.60
CrC ₂ NOH*OH	3/2	2.26	-1.73	-682.57	0.83
MnC ₂ N*	5/2	2.36	-2.08	-659.72	0.20
MnC ₂ N*OOH	2	2.15	-1.84	-675.97	0.60
MnC2N*O	5/2	2.54	-1.65	-666.51	0.30
MnC ₂ N*OH	2	2.10	-1.85	-671.77	0.50
MnC ₂ NOH*OOH	2	2.71	-1.56	-687.07	0.87
MnC ₂ NOH*O	2	3.02	-1.41	-677.89	0.61
MnC ₂ NOH*OH	2	2.45	-1.64	-682.60	0.89
FeC ₂ N*	2	0.92	-0.64	-636.83	0.25
FeC ₂ N*OOH	3/2	0.73	-0.36	-652.12	0.57
FeC2N*O	2	0.80	0.13	-642.86	0.29
FeC ₂ N*OH	3/2	1.15	0.24	-648.17	0.53
FeC ₂ NOH*OOH	2	0.77	0.04	-662.94	0.83
FeC ₂ NOH*O	3/2	0.95	0.82	-653.39	0.56
FeC ₂ NOH*OH	2	0.82	0.29	-658.89	0.80
CoC ₂ N*	3/2	0.95	-0.49	-634.94	0.24
CoC ₂ N*OOH	1	0.72	-0.24	-650.40	0.54
CoC2N*O	3/2	0.87	0.37	-641.03	0.27
CoC ₂ N*OH	1	0.77	0.05	-646.20	0.52
CoC ₂ NOH*OOH	3/2	0.94	0.44	-660.97	0.81
CoC ₂ NOH*O	3/2	1.04	0.94	-651.47	0.58
CoC ₂ NOH*OH	3/2	0.92	0.50	-656.76	0.82
NiC ₂ N*	1	1.40	0.17	-633.61	0.25
NiC ₂ N*OOH	1/2	0.87	0.25	-648.38	0.55
NiC2N*O	1	0.99	0.73	-638.94	0.26
NiC ₂ N*OH	1/2	0.81	0.22	-644.47	0.53
NiC ₂ NOH*OOH	1	0.82	0.65	-658.82	0.84
NiC ₂ NOH*O	1/2	0.92	0.67	-648.66	0.56
- NiC ₂ NOH*OH	0	1.12	0.85	-653.97	0.81
CuC ₂ N*	0	0.59	-0.58	-632.07	0.22
CuC ₂ N*OOH	0	0.89	0.43	-647.02	0.53
CuC2N*O	1/2	0.92	0.68	-637.00	0.23

CuC ₂ N*OH	0	0.84	0.34	-642.63	0.49
CuC ₂ NOH*OOH	1/2	0.79	0.46	-657.13	0.80
CuC ₂ NOH*O	1/2	1.17	1.12	-646.76	0.47
CuC ₂ NOH*OH	1/2	1.17	1.10	-652.74	0.77

.

Figure S1. The total density of states of $TM-C_2N$.

Figure S2. Constant-potential free energy of the ORR on (a) TiC_2N and (b) TiC_2N*OH ; the coverage of TiC_2N and TiC_2N*OH vs. electrode potential; (d) simulation of total polarization current.

Figure S3. Constant-potential free energy of the ORR on (a) VC_2N and (b) VC_2N*OH ; the coverage of VC_2N and VC_2N*OH vs. electrode potential; (d) simulation of total polarization current.

Figure S4. Constant-potential free energy of the ORR on (a) CrC_2N and (b) CrC_2N*OH ; the coverage of CrC_2N and CrC_2N*OH vs. electrode potential; (d) simulation of total polarization current.

Figure S5. Constant-potential free energy of the ORR on (a) MnC₂N and (b) MnC₂N*OH; the coverage of MnC₂N and MnC₂N*OH vs. electrode potential; (d) simulation of total polarization current.

Figure S6. Constant-potential free energy of the ORR on (a) CoC_2N and (b) CoC_2N^*OH ; the coverage of CoC_2N and CoC_2N^*OH vs. electrode potential; (d) simulation of total polarization current.

Figure S7. Constant-potential free energy of the ORR on (a) NiC₂N and (b) NiC₂N*OH; the coverage of NiC₂N and NiC₂N*OH vs. electrode potential; (d) simulation of total polarization current.

Figure S8. The linear fitting of adsorption free energy of G*OOH and G*O vs. G*OH

References:

- 1. Y. Wang, Y.-J. Tang and K. Zhou, J. Am. Chem. Soc., 2019, 141, 14115-14119.
- D. T. Limmer, A. P. Willard, P. Madden and D. Chandler, *Proc. Natl. Acad. Sci.*, 2013, **110**, 4200-4205.
- 3. Z. Huang and Q. Tang, J. Phys. Chem. C. 2022, 126, 21606-21615.
- 4. H. A. Hansen, V. Viswanathan and J. K. Nørskov, *J. Phys. Chem. C* . 2014, **118**, 6706-6718.