Supporting Information

Metallic mesoporous oxide single crystals delivering enhanced electrocatalytic performance

Menghui Han,^{abcd} Fangyuan Cheng^{*abcd} and Kui Xie^{*abcde}

- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.
- ^b Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- ^c Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
- ^d Fujian College, University of Chinese Academy of Sciences, Fuzhou 350108, China.
- ^e School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- * Corresponding author: cfy@fjirsm.ac.cn (F. Cheng), xiekui@sjtu.edu.cn (K. Xie).

Fig. S1 Growth mechanism of PSC Fe_2O_3 and PSC Co_3O_4 .

Fig. S2 XRD patterns of different nano single crystals compared with standard cards. (a) FeS_2 nano single crystal. (b) PSC Fe_2O_3 . (c) CoS_2 nano single crystal. (d) PSC Co_3O_4 .

Fig. S3 EDS images. (a) Precursor FeS_2 nano single crystal. (b) PSC Fe_2O_3 . (c) Precursor CoS_2 nano single crystal. (d) PSC Co_3O_4 .

Fig. S4 TGA curves under the air atmosphere. (a) From precursor FeS_2 to PSC Fe_2O_3 .(b)Fromprecursor CoS_2 toPSC Co_3O_4 .

Fig. S5 Raman spectras. (a) FeS_2 nano single crystal. (b) PSC Fe_2O_3 . (c) CoS_2 nano single crystal. (d) PSC Co_3O_4 .

Fig. S6 (a) FETEM image of precursor FeS_2 nano single crystal. (b) HRTEM image of precursor FeS_2 nano single crystal. (c) SAED pattern of precursor FeS_2 nano single crystal. (d) EDS elemental mapping results of precursor FeS_2 nano single crystal.

Fig. S7 (a) FETEM image of precursor CoS_2 nano single crystal. (b) HRTEM image of precursor CoS_2 nano single crystal. (c) SAED pattern of precursor CoS_2 nano single crystal. (d) EDS elemental mapping results of precursor CoS_2 nano single crystal.

Fig. S8Specific area, pore size, and N2 absorption-desorption isotherm of PSC Fe2O3,PSC Co3O4, Pt/Fe2O3 and Pt/Co3O4. (a) Specific area. (b-c) N2 absorption-deorptionisotherm, (b) PSC Fe2O3, (c) PSC Pt/Co3O4. (d) Pore size. (e-f) N2 absorption-deorptionisotherm, (e)PSCPt/Fe2O3, (f)PSCCo3O4.

Fig. S9 Weight content ratio of each element in PSC Fe_2O_3 , PSC Co_3O_4 , Pt/ Fe_2O_3 and Pt/ Co_3O_4 .

Fig. S10 PSC Fe_2O_3 of (a) CV curves. (b) Linear relationship between current densityandscanrate.

Fig. S11PSC Pt/Fe_2O_3 of (a) CV curves. (b) Linear relationship between currentdensityandscanrate.

Fig. S12 PSC Co_3O_4 of (a) CV curves. (b) Linear relationship between current densityandscanrate.

Fig. S13PSC Pt/Co_3O_4 of (a) CV curves. (b) Linear relationship between currentdensityandscanrate.

Fig. S14 The OER electrocatalytic performance of PPC Fe_2O_3 , NPC Fe_2O_3 , PPC Co_3O_4 ,NPC Co_3O_4 in 1M KOH solution. (a) LSV curves. (b) Overpotentials at 10 mA cm⁻². (c)Tafelslopes.(d)EIScurves.

Catalysts	Electrolyte	η (mV) at j=10 mA·cm ⁻²	Tafel slope (mV·dec⁻¹)	Reference s
Fe ₂ O ₃ -(012)NCs	1 M KOH	317	59	1
Fe ₂ O ₃ @Mo	1 M KOH	359	80	2
NiFeO _x	1 M KOH	380	/	3
Fe ₂ O ₃ /FeS	1 M KOH	320	90	4
CoFe ₂ O ₄	1 M KOH	320	71	5
Co ₃ O ₄ @CoO SC	0.5 M KOH	430	60	6
Co ₃ O ₄ /SnO ₂	1 M KOH	487	100	7
C-Co/Co ₃ O ₄	1 M KOH	352	80	8
Ce-Co ₃ O ₄	0.5 M H ₂ SO ₄	345	85.15	9
PtFe/G-2h	1 M KOH	315	56	10
O-MoS ₂ @Pt	1 M KOH	244	53	11
Pt@Ti₃C₂T _x –rGO 3 : 1	0.1 M HClO₄	490	165.3	12
1% Pt-substituted-Co $_3O_4$	1 M KOH	380	117	13
RuO ₂ /(Co,Mn) ₃ O ₄ /CC	0.5 M H ₂ SO ₄	270	77	14
Fe ₂ O ₃ sphere	1 M KOH	396	128	2
Co ₃ O ₄ nano spheres	1 M KOH	407	107	7
PSC Fe ₂ O ₃	1 M KOH	391	119	This work
PSC Co ₃ O ₄	1 M KOH	360	86	This work
PSC Pt/Fe ₂ O ₃	1 M KOH	319	76	This work
PSC Pt/Co ₃ O ₄	1 M KOH	269	69	This work

Table S1. The Summary of the performance of different catalysts for OER.

Reference

- 1 H. Wu, T. Yang, Y. Du, L. Shen and G. W. Ho, *Adv. Mater.*, 2018, **30**, 1804341.
- 2 A. Maurya and M. Yadav, J. Alloy. Compd., 2023, 956, 170208.
- 3 W. Moschkowitsch, N. Zion, H. C. Honig, N. Levy, D. A. Cullen and L. Elbaz, *ACS Catal.*, 2022, **12**, 12162-12169.
- 4 N. A. Khan, N. Rashid, I. Ahmad, Zahidullah, R. Zairov, H. u. Rehman, M. F. Nazar and U. Jabeen, *Int. J. Hydrog. Energy*, 2022, **47**, 22340-22347.
- 5 F. Waag, B. Gökce, C. Kalapu, G. Bendt, S. Salamon, J. Landers, U. Hagemann, M. Heidelmann, S. Schulz, H. Wende, N. Hartmann, M. Behrens and S. Barcikowski, *Sci Rep*, 2017, **7**, 13161.
- 6 C.-W. Tung, Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan, H.-S. Sheu, Y.-C. Cheng and H. M. Chen, *Nat. Commun.*, 2015, **6**, 8106.
- 7 J. Milikić, S. Knežević, M. Ognjanović, D. Stanković, L. Rakočević and B. Šljukić, Int. J. Hydrog. Energy, 2023, **48**, 27568-27581.
- 8 L. Hang, Y. Sun, D. Men, S. Liu, Q. Zhao, W. Cai and Y. Li, *J. Mater. Chem. A*, 2017, **5**, 11163-11170.
- 9 J. Yang, F. Xu, W. Zhao, L. Liu and B. Weng, *Small*, 2024, **20**, 2309363.
- 10 H. Xiao, X. Yang, M. Zhao, R. Zhang, Y. Jing, L. Zhang, Y. He, H. Wu and J. Jia, *Int. J. Hydrog. Energy*, 2023, **48**, 38728-38741.
- 11 F. Gong, S. Ye, M. Liu, J. Zhang, L. Gong, G. Zeng, E. Meng, P. Su, K. Xie, Y. Zhang and J. Liu, *Nano Energy*, 2020, **78**, 105284.
- 12 L. Vazhayal, S. B. Alex and S. K. Haram, *J. Mater. Chem. A*, 2024, **12**, 27671-27685.
- 13 S. Nellaiappan, N. Jhariya, S. Irusta and A. Singhal, *Electrochim. Acta*, 2021, **365**, 137234.
- 14 S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao and P. Xu, *Appl. Catal. B-Environ.*, 2021, **297**, 120442.