Supporting Information

Optimized Ru Catalysts for the Selective Cleavage of C_{Ar}**-OCH**₃ **Bonds in Guaiacol Under**

Mild Conditions

*Chuqiao Song*¹, *Wei Cheng*¹, *Xiaojie Wu*¹, *Shufang Zhao*^{1,2*}, *Ying Tang*¹, *Xin Tang*¹, *Yao Xu*³, *Lili Lin*^{1,2*}, *Siyu Yao*^{4*}

Fig. S1 N₂ adsorption-desorption isotherms of Ru/ γ -Al₂O₃ catalysts with different Ru particle sizes. a. Ru_{0.6}/ γ -Al₂O₃, b. Ru_{1.5}/ γ -Al₂O₃, c. Ru_{2.5}/ γ -Al₂O₃, d. Ru_{7.5}/ γ -Al₂O₃ catalysts.

Fig. S2 STEM images and elemental mappings of Ru/γ -Al₂O₃ catalysts with different Ru particle sizes. a. $Ru_{0.6}/\gamma$ -Al₂O₃, b. $Ru_{1.5}/\gamma$ -Al₂O₃, c. $Ru_{2.5}/\gamma$ -Al₂O₃, d. $Ru_{7.5}/\gamma$ -Al₂O₃ catalysts.

Fig. S3 High-resolution TEM image of the $Ru_{1.5}\!/\!\gamma\text{-}Al_2O_3$ catalyst.

Fig. S4 Quasi-in-situ XPS of Ru/ γ -Al₂O₃ catalysts. All catalysts are pre-reduced at 200 °C for 2 h.

Catalyst	Frequency (cm ⁻¹)	Assign	Proportion (%)	
	2122	Ru ^{δ+} -CO	12.9	
$Ru_{0.6}/\gamma\text{-}Al_2O_3$	2081	Ru-(CO) _x	78.2	
	2022	Ru-CO	8.9	
Ru _{1.5} /γ-Al ₂ O ₃	2124	Ru ^{δ+} -CO	12.2	
	2072	Ru-(CO) _x	68.3	
	2002	Ru-CO	19.5	
	2128	Ru ^{δ+} -CO	14.3	
$Ru_{2.5}/\gamma$ - Al_2O_3	2065	Ru-(CO) _x	56.2	
	2025, 2002	Ru-CO	29.5	
	2128	$Ru^{\delta +}$ -CO	3.1	
$Ru_{7.5}/\gamma$ - Al_2O_3	2068	Ru-(CO) _x	14.5	
	2044, 1992	Ru-CO	82.4	

Table S1. CO-DRIFTS peak assignments and occupied proportion based on fitting results on Ru/γ - Al_2O_3 catalysts.

Fig. S5 a. Cycling stability test under low conversion of the $Ru_{1.5}/\gamma$ -Al₂O₃ catalyst at 190 °C for guaiacol hydrodeoxygenation reaction (Reaction condition: 0.3 mmol guaiacol, 0.01 g catalyst, 3.0 mL H₂O, 5 bar H₂, 190 °C, 1/6 h, 400 rpm); b. STEM images and elemental mappings of the used-Ru_{1.5}/ γ -Al₂O₃ catalyst.

Table S2. Physicochemical properties of the $Ru_{1.5}/\gamma$ -Al₂O₃ catalysts.

Catalyst	Ru ^a (wt %)	S _{BET} (m ² /g)	
$Ru_{1.5}/\gamma$ -Al ₂ O ₃ -Fresh	1.50	159.1	
$Ru_{1.5}/\gamma$ - Al_2O_3 -Used ^b	1.48	112.8	

^aMeasured by inductive coupled plasma-optical emission spectroscopy (ICP-OES) on a Varian ICP-OES 720.

^bThe used catalyst was obtained by centrifugation from the solvent, washed several times with deionized water, and dried overnight in an oven at 60 °C before characterizations.

Fig. S6 Catalytic performance of guaiacol hydrodeoxygenation at different temperatures on a. $Ru_{0.6}/\gamma$ -Al₂O₃, b. $Ru_{1.5}/\gamma$ -Al₂O₃, c. $Ru_{2.5}/\gamma$ -Al₂O₃, d. $Ru_{7.5}/\gamma$ -Al₂O₃ catalysts (Reaction condition: 0.3 mmol guaiacol, 0.02 g catalyst, 3.0 mL H₂O, 5 bar H₂, 6 h, 400 rpm, the error bars show the deviation of guaiacol conversion based on three repeated experiments).

Fig. S7 Catalytic performance of guaiacol hydrodeoxygenation under different H_2 pressure on the $Ru_{1.5}/\gamma$ -Al₂O₃ catalyst (Reaction condition: 0.3 mmol guaiacol, 0.02 g catalyst, 3.0 mL H₂O, 190 °C, 6 h, 400 rpm, the error bars show the deviation of guaiacol conversion based on three repeated experiments).

	Catalyst	Reaction condition		on			Cyclohexanol	
Entry		Т	P(H ₂)	t	Solvent	Conv. /%	yield	Ref.
		/°C	/MPa	/h			/%	
1	Ru/Al ₂ O ₃	190	0.5	6	H ₂ O	99.9	95.0	This
								work
2	Ru/TiO ₂	240	1.0	1	dioxane	71.7	51.0	1
3	Ru/C	200	-	5	isopropanol	99.0	70.0	2
4	Ru-MnO/CNTs	200	2.0	3.33	decahydronaphthalene	99.4	85.8	3
5	2Ru2.5Fe/Al ₂ O ₃	240	3.0	4	n-octane	99.9	81.3	4
6	Ru ₁ /CeO ₂	200	1.0	6	H ₂ O	99.9	99.9	5
7	RuMn/Al ₂ O ₃ -	180	2.0	4	H ₂ O	100.0	96.8	6
	SiO ₂							
8	Ru/MgO-ZrO ₂	250	1.0	1.5	H ₂ O	100.0	83.1	7
9	Ru/TiO ₂ -eSiO ₂	160	1.5	1.67	H ₂ O	100.0	84.2	8
10	Ru/ZnAlPWO	250	2.0	1	H ₂ O	100.0	90.0	9
11	Ru-MnO _x /C	160	1.5	4	H ₂ O	100.0	81.0	10
12	Ru/C+MgO	160	1.5	2	H ₂ O	98.0	79.0	11
13	Ru/Al ₂ O ₃	225	1.0	4	cyclohexane	100.0	82.0	12
14	Ru/Al ₂ O ₃	225	0	2	isopropanol	100.0	74.0	13
15	Ru/C	140	3.0	4	CH ₃ COOH	84.0	63.0	14
16	Ru-PAF-30	250	3.0	1	H ₂ O	100.0	64.0	15
17	HRO/Mg(OH) ₂	160	1.0	6	H ₂ O	100.0	89.0	16

Table S3. State-of-the-art Ru-based catalysts for hydrodeoxygenation of guaiacol to cyclohexanol

Fig. S8 a. H₂-TPD results; and b. the corresponding H₂ adsorption capacity of Ru/γ -Al₂O₃ catalysts.

Fig. S9 Catalytic performances of a. the $Ru_{1.5}/\gamma$ -Al₂O₃ and b. the $Ru_{7.5}/\gamma$ -Al₂O₃ at low conversion level of ~15 % at different temperatures. (Reaction condition: 0.3 mmol guaiacol, 0.01 g catalyst, $3.0 \text{ mL H}_2\text{O}$, 5 bar H₂, 1/6 h, 400 rpm, the error bars show the deviation of guaiacol conversion based on three repeated experiments).

Fig. S10 In situ DRIFTS of adsorption with a. guaiacol on γ -Al₂O₃, b. guaiacol on Ru_{1.5}/ γ -Al₂O₃, c. methylbenzene on γ -Al₂O₃, d. anisole on γ -Al₂O₃, e. cyclohexanol on γ -Al₂O₃, and f. phenol aqueous solution on γ -Al₂O₃, at 50 °C.

Fig. S11 In situ DRIFTS of the adsorbed intermediate hydrogenation on $Ru_{1.5}/\gamma$ -Al₂O₃ catalyst at 150 °C with the inlet gas switched from Ar to 20% H₂ for 120 min.

Fig. S12 In situ DRIFTS of the adsorbed intermediate hydrogenation on a. $Ru_{0.6}/\gamma$ -Al₂O₃, b. $Ru_{1.5}/\gamma$ -Al₂O₃ and c. $Ru_{7.5}/\gamma$ -Al₂O₃ catalysts at 150 °C with the inlet gas switched from Ar to 20% H₂ for 10 min.

Fig. S13 The relationship between the proportion of low coordinated Ru sites and the relative ratio of $r_{CAr-OCH3}/r_{CAr=CAr}$ of guaiacol.

Different sites	Formulas ^a
Total atom number of each particle (N_T^b)	0.25(14m ³ -21m ² +14m-4)
Surface atom number of each particle (N_s)	7.5m ² -14m+6
Corner atom number of each particle (N_{corner})	12
Edge atom number of each particle (N_{edge})	18m-40
Terrace atom number of each particle ($N_{Terrace}$)	7.5m ² -32m+34

Table S4. Formulas to calculate the atom numbers at different sites for each Ru particle ¹⁸

^a m is the number of atoms lying on an equivalent edge (corner atoms included).

^b the particle size with the N_T in one truncated bipyramid follows the relationship of $1.105 x N_T^{1/3} x d_{Ru atom} (d_{Ru atom} = 0.268 \text{ nm}).$

For the fraction of each typed active site per mole of Ru: $y_i = N_i/N_T$.

Given the used mole of Ru in each reaction was kept the same $(n_{Ru}=0.002/M_{Ru})$, the particle numbers of each type active site per mole of Ru were also calculated:

 $N_p=n_{Ru}\cdot N_A/N_T=(0.002/M_{Ru})\cdot N_A/N_T$, N_A is the Avogadro constant and M_{Ru} is the molecular weight.

Fig. S14 a. Truncated hexagonal bipyramid structure model; **b.** The proportion of different surface sites obtained from theoretical proportion based on Fig. S14a as a function of Ru particle size.

References

- 1. X. Wang, P. Wu, Z. Wang, L. Zhou, Y. Liu, H. Cheng, M. Arai, C. Zhang and F. Zhao, *ACS Sustainable Chem. Eng.*, 2021, 9, 3083-3094.
- 2. M. Kim, J.-M. Ha, K.-Y. Lee and J. Jae, Catal Commun., 2016, 86, 113-118.
- 3. W. Long, P. Liu, W. Xiong, F. Hao and H. a. Luo, Can. J. Chem., 2019, 98, 57-65.
- 4. T. Liu, Z. Tian, W. Zhang, B. Luo, L. Lei, C. Wang, J. Liu, R. Shu and Y. Chen, *Fuel*, 2023, 339, 126916.
- 5. K. Zhang, Q. Meng, H. Wu, J. Yan, X. Mei, P. An, L. Zheng, J. Zhang, M. He and B. Han, *J. Am. Chem. Soc.* 2022, 144, 20834-20846.
- 6. M. Chen, Q. Zhong, M. Zhang, H. Huang, Y. Liu and Z. Wei, *Catal Commun.*, 2022, 172, 106550.
- 7. M. Zhang, L. Xiang, G. Fan, L. Yang and F. Li, Mol. Catal., 2022, 533, 112794.
- 8. B. Han, Z. Bao, T. Liu, H. Zhou, G. Zhuang, X. Zhong, S. Deng and J. Wang, *ChemistrySelect*, 2017, 2, 9599-9606.
- 9. Z. Wang, A. Wang, L. Yang, G. Fan and F. Li, Mol. Catal., 2022, 528, 112503.
- M. Ishikawa, M. Tamura, Y. Nakagawa and K. Tomishige, *Appl Catal B-Environ.*, 2016, 182, 193-203.
- 11. Y. Nakagawa, M. Ishikawa, M. Tamura and K. Tomishige, *Green Chem.*, 2014, 16, 2197-2203.
- 12. D. Singh and P. L. Dhepe, Mol. Catal., 2020, 480, 110525.
- 13. T. S. Khan, D. Singh, P. P. Samal, S. Krishnamurty and P. L. Dhepe, *ACS Sustainable Chem. Eng.*, 2021, 9, 14040-14050.
- 14. C. E. J. J. Vriamont, T. Chen, C. Romain, P. Corbett, P. Manageracharath, J. Peet, C. M. Conifer, J. P. Hallett and G. J. P. Britovsek, *ACS Catal.*, 2019, 9, 2345-2354.
- 15. L. A. Kulikov, M. A. Bazhenova, D. A. Makeeva, M. V. Terenina, A. L. Maximov and E. A. Karakhanov, *Petroleum Chemistry*, 2022, 62, 1096-1106.
- 16. S. Gundekari, B. Biswas, T. Bhaskar and K. Srinivasan, Biomass Bioenergy, 2022, 161,

106448.

- 17. W. Zhao, Z. Zhang, B. Wang, Y. Lv, L. Huang and P. Liu, Appl. Catal., A, 2024, 678, 119711.
- 18. M. Ye, Y. Li, Z. Yang, C. Yao, W. Sun, X. Zhang, W. Chen, G. Qian, X. Duan, Y. Cao, L.
- Li, X. Zhou and J. Zhang, Angew. Chem. Int. Ed., 2023, 62, e202301024.