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1. Supplementary Figures and Tables

Fig S1. (a-c) SEM images of pristine CC. (d) Diameter distribution of carbon filaments 
in the CC.
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Fig S2. (a-f) Photographs of as-prepared FeNi@NBCNTs/CC under different stress 
states. (g) Photographs of FeNi@NBCNTs/CC after removing the external stress.
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Fig S3. SEM images of FeNi@NBCNTs/CC synthetized at different concentrations of 
Fe(NO3)3 and Ni(NO3)2 in the precursor solution. (a, b) 1 mM Fe(NO3)3 and 1 mM  
Ni(NO3)2. (c, d) 2 mM Fe(NO3)3 and 2 mM. (e, f) 4 mM Fe(NO3)3 and 4 mM  Ni(NO3)2.
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Fig S4. Particle size distribution of FeNi nanoparticles encapsulated within carbon 
nanotubes
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Fig S5. (a-c) SEM images of Fe@NBCNTs/CC. (d) TEM image of Fe@NBCNTs. (e) 
TEM image for a piece of NBCNTs. (f) TEM image of a Fe nanoparticle. (g-k) 
HAADF-STEM elemental mapping images of Fe@NBCNTs, showing the presence of 
Fe, C, N and O elements.
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Fig S6. (a-c) SEM images of Ni@NBCNTs/CC. (d) TEM image of Ni@NBCNTs. (e) 
TEM image for a piece of NBCNTs. (f) TEM image of a Ni nanoparticle. (g-k) 
HAADF-STEM elemental mapping images of Ni@NBCNTs, showing the presence of 
Ni, C, N and O elements.
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Fig S7. XPS survery spectrum of FeNi@NBCNTs/CC.
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Fig S8. ORR polarization curves (left) at various rotation rates and the corresponding 
Koutecky-Levich plots (right) obtained at different potentials from (a, b) 
Fe@NBCNTs/CC, (c, d) Ni@NBCNTs/CC, (e, f) CC and (g, h) Pt/C.
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Fig S9. SEM images (a-c) and XRD patterns (d) of FeNi@NBCNTs/CC after long-
term ORR and OER stability tests.
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Fig S10. The CV curves recorded at various scan rates ranging from 5 to 30 mV s-1
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Fig S11. Photograph of liqiud RZAB of Pt/C+Ru/C cathode with an open-circuit 
voltage of 1.436 V.



13

Fig S12. Photograph of flexible RZAB of Pt/C+Ru/C cathode with an open-circuit 
voltage of 1.343 V.
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Table S1. Thorough comparison of performances of recently reported bifunctional 
oxygen electrocatalysts.

Catalyst ORR E1/2 vs 
RHE

OER Ej=10 vs 
RHE

ΔЕ = (Ej = 10−E1/2) 
vs RHE

Peak power 
density Capacity Stability Reference

FeNi@NBCNTs/C
C 0.90V 1.52V 0.62 171.8mW cm-2 792.6mAhgZn-1 425h@10mA 

cm-2 This work

CoNC-50 0.84V 1.65V 0.81 125.2mW cm-2 790.8mAhgZn-1 50h@5mA cm-2 [1]

CP-N-C@900 0.86V 1.65V 0.79 279.5mW cm-2 726.3mAhgZn-1 120h@5mA cm-2 [2]

Co-NC+CNT 0.855V 1.695V 0.84 225mW cm-2 906.0mAhgZn-1 200h@5mA cm-2 [3]

P-CoNi@NSCs 0.81V 1.6V 0,79 87.9mW cm-2 745.0mAhgZn-1 430h@10mA 
cm-2

[4]

Fe2-N /CNTs-850 0.855V 1.668V 0.814 122.5mW cm-2 764.6mAhgZn-1 160h@3mA cm-2 [5]

Fe12Ni23Cr10Co30
Mn25/CNT 0.81V 1.514V 0.704 128.6mW cm-2 760mAhgZn-1 256@5mA cm-2 [6]

CMS2–NiCo2O4–3 0.82V 1.622V 0.802 175.5mW cm-2 801.1mAhgZn-1 167@5mA cm-2 [7]

Co9S8@NiFe-
LDH 0.74V 1.62V 0.88 148mW cm-2 780.5mAhgZn-1 200h@10mA 

cm-2
[8]

FeNi/NS-C 0.83V 1.585V 0.755 144mW cm-2 821.0mAhgZn-1 1000h@5mA 
cm-2

[9]

Co/N-HPCs-800 0.86V 1.597V 0.737 159.67mW cm-

2
787.94mAhgZn-

1 30h@5mA cm-2 [10]

Co-NC@Nb-TiOx 0.86V 1.71V 0.85 123.46mW cm-

2 780.4mAhgZn-1 225h@5mA cm-2 [11]

CoSx@srGO/CNT 0.81V 1.56V 0.75 66.45mW cm-2 583mAhgZn-1 1000min@10m
A cm-2

[12]
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