Supporting Information

Transition metal-promoted Fe-based catalysts for photothermal catalytic CO₂ hydrogenation

Shuai Yan^a, Yuting Wang^a, Guangyao Chen^a, Wanli Ma, Yingquan Chen^a, Xianhua Wang^a, Kuo

Zeng^a, Yonggang Yao^b, Hongqi Sun^{*},^c, Haiping Yang^{*,a}, Hanping Chen^a

a State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong

University of Science and Technology, Wuhan 430074, China.

b State Key Laboratory of Materials Processing and Die & Mould Technology, School of

Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan,

430074, China.

- c School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
- * E-mail: yhping2002@163.com (Yang), hongqi.sun@uwa.edu.au (Sun)

Supporting Text

Catalysts preparation

Typically, metal nitrates were firstly dissolved in water to give solution A with total concentration of 0.4 M (M : Fe = 1 : 4). Then solution A was dropwise added into excess NaOH solution with addition of 2 ml PEG in advance under vigorous stirring. After aging for 4 h, the obtained precipitation was collected by a filter and washed repeatedly by DI water until the filtrate reached neutral pH. The filter cake was dried overnight and calcined at 450 °C for 3 h in a muffle furnace. Finally, all samples were pre-activated under hydrogen atmosphere at 400 °C for 2 h followed by passivation by 1% O₂/N₂ to give MFeO_x catalysts. For ZnFe sample, the NaOH solution was replaced by NaOH/Na₂CO₃ mixed solution in case of redissolution of zincates.

Photothermocatalytic CO₂ hydrogenation evaluation

In a typical batch test, 100 mg catalyst was dispersed on a quartz fiber filter to form a radiation area around 3.14 cm². Then the catalyst film was place on the bottom center of the reactor followed by sealing the reactor and purging the chamber with feeding gas ($CO_2/H_2/N_2 = 3:9:1$). The batch tests were carried out under 2.8 W cm⁻² and 0.2 MPa for 2 h. During the reaction, the temperature of catalyst bed was monitored by thermocouples and the results were illustrated in Fig. S2. After the reaction, the reactor was heated to 220 °C to vaporize liquid products and they directly flowed to a gas chromatograph equipped with TCD and FID detectors (Panna 91 Plus) along 200 °C heating tube. The dark contrast tests were conducted under the same conditions except for light irradiation.

For flow type tests, the temperature of catalyst bed was fixed at 300 °C by irradiation of 2.0 W cm⁻² and external heating to rule out the difference in light-heat conversion between different MFeO_x catalysts. In addition, the reaction atmosphere was identical to the batch type with a total flow rate of 13 mL min⁻¹. The online product was collected and analyzed after 2 h reaction. The dark contrast tests were conducted under the same conditions besides the introduction of light.

Equations used to calculate the CO₂ conversion and products selectivity are listed below:

$$\chi(CO_2) = \frac{c(CO_2)_{inlet} - \frac{c(N_2)_{inlet}}{c(N_2)_{outlet}} \times c(CO_2)_{outlet}}{c(CO_2)_{intlet}} \times 100\%$$

$$S(CO) = \frac{c(CO)}{c(CO) + c(CH_4) + c(C_{2+})} \times 100\%$$
(1)

$$S(CH_4) = \frac{c(CH_4)}{c(CO) + c(CH_4) + c(C_{2+})} \times 100\%$$
(4)

$$S(C_{2+}) = \frac{c(C_{2+})}{c(CO) + c(CH_4) + c(C_{2+})} \times 100\%$$

where $\chi(CO_2)$ represents the CO₂ conversion while S(CO), S(CH₄) and S(C₂₊) stand for the selectivity toward CO, CH₄ and C₂₊ respectively. The gas molar concentration c(CO), c(CH₄), c(C₂₊) and CO₂ molar concentration for inlet c(CO₂)_{inlet}, outlet c(CO₂)_{outlet} were obtained from gas chromatograph standardization. Besides, the space-time yield was calculated by formula listed below.

$$STY(CO) = \frac{F_{inlet}(mmol/h) \times c(CO) \times c(N_2)_{outlet}}{m_{catalyst}(g) \times c(N_2)_{outlet}} \times 100\%$$
(5)

$$STY(CH_4) = \frac{F_{inlet}(mmol/h) \times c(CH_4) \times c(N_2)_{outlet}}{m_{catalyst}(g) \times c(N_2)_{outlet}} \times 100\%$$
(6)

$$STY(C_{2+}) = \frac{F_{inlet}(mmol/h) \times c(C_{2+}) \times c(N_2)_{outlet}}{m_{catalyst}(g) \times c(N_2)_{outlet}} \times 100\%$$
(7)

where STY(CO), STY(CH₄) and STY(C_{2+}) are space-time yield of CO, CH₄ and C_{2+} respectively. Total inlet molar flow rate F_{inlet} was obtained from mass flowmeters.

Supporting Tables

	1 1			
Sample	$\frac{S_{BET}}{(m^2/g)}$	V_{p} (cm ³ /g)	D _p (nm)	Fe/M mole ratio
Fe	12.3	0.047	1.51	-
CoFe	12.2	0.190	6.24	4.02
MnFe	17.0	0.236	5.53	3.95
ZnFe	13.3	0.190	5.73	3.91
CuFe	7.7	0.033	1.70	4.03

Table S1 Textural properties of the $MFeO_x$ catalysts.

Table S2	Summarization	of	photothermal	CO_2	hydrogenation	catalysts	for	C ₂₊
production	1.							

	Reaction conditions				CO ₂	Product Selectivity (%)		C ₂₊			
Catalysts	Light intens ity (W/m ²)	Press ure (MPa)	Te st typ e	Feed rate (ml/mi n)	T (℃)	Convers ion (%)	со	CH 4	C ₂₊	product ion rate (mmol g _{cat} ⁻¹ h ⁻¹)	Ref ·
Co- CoO _x /MA O	1.2	0.3	flo w	2400 ml h ⁻ ¹ g ⁻¹	32 5	23.7	35. 2	24.3	40.5	1.303	[1]
FeNi _x /Fe ₂ O ₃ and NiO	0.56	0.1	flo w	8	25 0	~24	~45	40	15	0.673	[2]
CoFe	-	0.18	flo w	25	25 0	7.76	59. 18	25.5 7	15.2 5	-	[3]
CoFe/CoF e ₂ O ₄	2	0.1	flo w	2.5	30 0	12.9	-	-	29.8	1.1	[4]
K- Ru/Fe ₃ O ₄	2.05	0.1	flo w	2	42 0	~35.0	~65	~12 .3	~22 .7	0.63	[5]
CoFe	2.8	0.2	flo W	13	30 0	20.8	77. 3	11.5	11.2	1.73	Thi s wor k

Supporting Figures

Fig. S1. The images of the photothermal reactor with thermocouples buried in the catalyst bed and Xenon lamp.

Fig. S2. Temperature profiles in batch-type tests for prepared MFeO_x catalysts.

Fig. S3. SEM images of prepared MFeO_x catalysts.

Fig. S4. UV-vis spectra of the prepared MFeO_x catalysts in comparison of the spectra from light sources.

Fig. S5 Hydrocarbon distribution for C_{2^+} and chain growth factor over MFeO_x catalysts.

Fig. S6. XRD patterns of MFeO_x catalysts spent in photothermal CO₂ hydrogenation.

Fig. S7. Fe 2p XPS of MFeO_x catalysts spent in photothermal CO_2 hydrogenation.

Fig. S8. Typical photocurrent of Fe and ZnFe catalyst in 0.1 M sodium sulfate electrolyte.

Reference

[1] S. Ning, H. Ou, Y. Li, C. Lv, S. Wang, D. Wang, J. Ye, Co(0) -Co(delta+) Interface Double-Site-Mediated C-C Coupling for the Photothermal Conversion of CO(2) into Light Olefins, Angew Chem Int Ed Engl, 62 (2023) e202302253. 10.1002/anie.202302253.

[2] S. Zhu, N. Li, D. Zhang, T. Yan, Metal/oxide heterostructures derived from Prussian blue analogues for efficient photocatalytic CO2 hydrogenation to hydrocarbons, Journal of CO2 Utilization, 64 (2022). 10.1016/j.jcou.2022.102177.

[3] J. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, Selective photothermal CO2 reduction to CO, CH4, alkanes, alkenes over bimetallic alloy catalysts derived from layered double hydroxide nanosheets, Nano Energy, 102 (2022). 10.1016/j.nanoen.2022.107650.

[4] R. Song, Z. Li, J. Guo, P.N. Duchesne, C. Qiu, C. Mao, J. Jia, S. Tang, Y.F. Xu, W. Zhou, L. Wang, W. Sun, X. Yan, L. Guo, D. Jing, G.A. Ozin, Solar Hydrocarbons: Single-Step, Atmospheric-Pressure Synthesis of C2-C4 Alkanes and Alkenes from CO2, Angew Chem Int Ed Engl, 62 (2023) e202304470. 10.1002/anie.202304470.

[5] C. Song, Z. Wang, J. Zhao, X. Qin, M. Peng, Z. Gao, M. Xu, Y. Xu, J. Yan, Y. Bi, M. Wang, L. Chen, Z. Yin, X. Liu, J. Liu, J. Liu, D. Ma, Photothermal conversion of CO2 into lower olefins at the interface of the K-promoted Ru/Fe3O4 catalyst, Chem Catalysis, 4 (2024). 10.1016/j.checat.2024.100960.