Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary material

Boosting Photoelectrochemical Water Splitting: Enhanced Hole Transport in BiVO₄ Photoanodes via Interfacial Coupling

Hairu Wang^a, Yuying Bai^a, Rongling Wang^a, Yanan Fu^a, Qiong, Mei^c, Bo Bai^a,

Qizhao Wang^{a,b,*}

^a School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University,

Xi'an 710054, Shaanxi, China

^b College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China

^c School of Land Engineering, Chang'an University, Xi'an 710054, Shaanxi, China

*Corresponding author:

Qizhao Wang, E-mail: qzwang@chd.edu.cn, wangqizhao@163.com

Experimental Section

Text S1. Materials

 $Co(CH_3COO)_2 \cdot 4H_2O$, $Ni(NO_3)_2 \cdot 6H_2O$, $(NH_4)_2Fe(SO_4)_2$, $Bi(NO_3)_3 \cdot 5H_2O$,

KI、KOH and anhydrous ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. P-benzoquinone (99.0%) and VO(acac)₂ were obtained from Shanghai Macklin Biochemical Technology Co., boric acid (H₃BO₃) and ammonia solution (NH₃·H₂O) was obtained from Tianjin Damao Chemical Reagent Factory.

Text S2. Preparation of nanoporous BiVO₄ photoanodes

BiVO₄ electrodes were prepared using a typical three-electrode electrodeposition method. First, Bi(NO₃)₃·5H₂O (0.9701 g) was added to a solution (50 mL) containing 0.4 M KI (pH adjusted to 1.7). Next, 0.23 M p-benzoquinone ethanol solution (20 mL) was mixed with the above solution as the electrolyte used in the subsequent electrodeposition, in which a three-electrode system was used including a Pt counter electrode, an FTO glass working electrode, and an Ag/AgCl reference electrode. The BiOI membrane was obtained by fixing position of the CV electrode at a potential varying from -0.13 to 0 V, with a scanning rate of 5 mV/s. Then, the reddish brown BiOI membrane was obtained by washing with deionized water and dried. 180 μ L of 0.2 M VO(acac)₂ DMSO solution was added dropwise to the prepared BiOI membrane and annealed at 450 °C for 2 h at a heating rate of 2 °C/min. Finally, the samples were immersed in 1.0 M NaOH solution to remove excess V₂O₅, then rinsed with distilled water and dried in an oven to obtain pure BiVO₄ electrode materials.

Text S3. Materials characterization

The microstructure of the samples was characterized by scanning electron microscopy (SEM, Sigma 300, ZEISS) and transmission electron microscopy (TEM, JEM-F200, JEOL). The elemental distribution of the samples was analyzed by energy spectrometry (EDS). X-ray diffraction (XRD) was recorded by Rigaku (D/max-IIIB, Japan) using Cu K α as a radiation source. X-ray photoelectron spectroscopy (XPS) analysis of all samples was performed by an energy spectrometer (Thermo Scientific K-Alpha). The samples were characterized by UV-vis diffuse reflectance spectroscopy (UV-vis DRS) using a UV-vis spectrophotometer (U3010). The charge separation efficiency was analyzed by photoluminescence spectroscopy (PL, Hitachi F-4500).

Text S4. PEC measurements

PEC performance of photoanodes was evaluated in a standard three-electrode system (CHI 660e, Shanghai Chenhua Instruments Co., Ltd., China), containing photoanodes as working electrode, Ag/AgCl electrode (3.5 M KCl) as the reference electrode, and platinum as the counter electrode. A xenon lamp with an AM 1.5 G filter was used as the light source, and the light intensity was corrected to 100 mW cm⁻² using a photopower meter. The PEC performance of the samples was evaluated in a rectangular quartz reactor (5 cm × 5 cm × 7 cm) using aqueous potassium borate (KBi, 1.0 M, pH = 9.5) as the electrolyte. Linear scanning voltammetry (LSV) was performed at a scan rate of 50 mV s⁻¹ in a voltage window of -0.6 ~ 1.0 V vs. Ag/AgCl. Electrochemical impedance spectroscopy (EIS) was performed in the frequency range of 0.1 Hz to 100 kHz with 1.2 V vs. RHE as the initial voltage.

Incident photoelectric conversion efficiency (IPCE) measurements were performed at 1.23 V vs. RHE using a monochromator (71 SWS, Beijing Porphyry Technology Co., Ltd.) under AM 1.5G illumination. The precipitation of photoelectrochemical H₂ and O₂ was studied in 1.0 M KBi after 30 min of saturation with N₂ gas. Measurements were carried out by gas chromatography (GC-9560, Shanghai Huayi Chromatography Technology Co., Ltd.) based on standard H₂ and O₂ emission curves. All potentials were calibrated to the reversible hydrogen electrode (RHE) using the following equation.

$$E_{\text{vs. RHE}} = E_{\text{vs. Ag/AgCl}} + 0.059 \times \text{pH}$$

Text S5. Calculation of IPCE

Incident photon-to-current efficiency (IPCE) values were calculated using following equation:

$$IPCE(\%) = \frac{J \times 1240}{\lambda \times Plight_{\times 100\%}(1)}$$

Where J presents the photocurrent density $(mA \cdot cm^{-2})$ obtained from the electrochemical workstation. λ and P_{light} are the incident light wavelength (nm) and the power density obtained at a specific wavelength (mW \cdot cm^{-2}), respectively.

Text S6. Calculation of APCE

Absorption photon-current efficiency (APCE) can be calculated by the following equation:

where LHE=1-10^{-A}, A is the absorbance according to the UV-vis spectrum.

Text S7. Calculation of ABPE

Applied bias photon-to-current efficiency (ABPE) can be calculated using the following equation:

$$ABPE(\%) = \frac{J \times (1.23 - V_b)}{P} \times 100\%$$
(3)

where J is the photocurrent density (mA·cm⁻²) obtained from the electrochemical workstation. V_b refers to the applied bias versus RHE (V), and P is the total light intensity of AM 1.5 G (100 mV·cm⁻²).

S1. LSV curves of NiFe-LDH/Co₃O₄/BiVO₄ photoanodes at different cobalt contents in 1.0M KBi electrolyte (pH=9.5) under AM 1.5 G illumination (100 mW cm⁻²).

S2. LSV curves of NiFe-LDH/Co₃O₄/BiVO₄ photoanodes at different Co₃O₄ loadings in 1.0 M KBi electrolyte (pH=9.5) under AM 1.5 G illumination (100 mW cm⁻²).

S3. LSV curves of NiFe-LDH in NiFe-LDH/Co3O4/BiVO4 photoanodes with different deposition

voltages.

S4. LSV curves of NiFe-LDH in NiFe-LDH/Co₃O₄/BiVO₄ photoanodes with different deposition

time.

S5. SEM cross-sectional images of (a) BiVO₄, (b) Co₃O₄/BiVO₄, and (c) NiFe-LDH/Co₃O₄/BiVO₄

films.

S6. XRD pattern of BiVO₄, Co₃O₄/BiVO₄, NiFe-LDH/BiVO₄ and NiFe-LDH/Co₃O₄/BiVO₄.

S7. The XPS spectrum of (a) survey and (b) C 1s.

S8. The XPS O 1s spectrum of BiVO₄, Co₃O₄/BiVO₄ and NiFe-LDH/Co₃O₄/BiVO₄.

S9. LSV curves in the presence of 1 M Na₂SO₃ with a scan rate of 50 mV s⁻¹.

S10. LHE (Light harvesting efficiency) of all samples.

S11. APCE (absorption photon-current efficiency) of all samples.

S12. H₂ and O₂ evolution of BiVO₄ photoanode at 1.23V vs. RHE under AM1.5G illumination.

S13. XRD patterns of NiFe-LDH/Co₃O₄/BiVO₄ photoanode before and after PEC measurements.

S14. SEM images of a NiFe-LDH/Co $_3O_4$ /BiVO $_4$ film before (a) and after (b) the PEC measurements.

S15. UV-vis DRS spectra of Co₃O₄ along with its estimated band gap energy.

S16. Cyclic Voltammetry (CV) tests at different scanning rates of $10 \sim 100 \text{ mV s}^{-1}$

for (a) BiVO₄, (b) Co₃O₄/BiVO₄, (c) NiFe-LDH/BiVO₄ and (d) NiFe-LDH/Co₃O₄/BiVO₄.

S17. Energy band alignment diagram of $Co_3O_4/BiVO_4$.

Photoelectrode	Reaction	Photocurrent	H_2/O_2	Ref.
	conditions			
NiFe-	1.0 M KBi	4.7 mA/cm^2	55.7 μ mol/h H ₂	This
LDH/Co ₃ O ₄ /BiVO ₄	AM 1.5G		$27.5 \ \mu mol/h \ O_2$	work
BiVO ₄ /NiFeOOH	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	2.03 mA/cm^2	$7.0 \ \mu mol/h \ H_2$	[1]
/Co-Pi	AM 1.5 G		3.6 µmol/h O ₂	
Ni(OH) ₂ /Cl-BiVO ₄	0.5 M K ₃ BO ₃	4.33 mA/cm ²	34.1 μ mol/h H ₂	[2]
	AM 1.5 G		16.5 µmol/h O ₂	
BiVO ₄ /BiOBr	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	2.69 mA/cm ²	-	[3]
	AM 1.5 G			
BiVO ₄ /Mn-NiOOH	0.5M Na ₂ SO ₄	2.41 mA/cm ²	-	[4]
	AM 1.5 G			
BiVO ₄ /Al ₂ O ₃ (a)/Fe	1.0 M Na ₂ SO ₃	3.8 mA/cm^2	-	[5]
OOH	AM 1.5 G			
Nd:BiVO ₄ @NiCo-	0.5M Na ₂ SO ₄	4.1 mA/cm^2	-	[6]
LDH	AM 1.5 G			
FeOOH/Ti:BiVO ₄	$0.2 \text{ M} \text{Na}_2 \text{SO}_4$	3.99 mA/cm ²	$31.6 \ \mu mol/h \ H_2$	[7]
	AM 1.5 G		15.5 µmol/h O ₂	

1.23V vs. RHE

1. Fang, G.; Liu, Z.; Han, C., Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. *Applied Surface Science* **2020**, *515*, 146095.

2. Zhang, J.; Wei, X.; Zhao, J.; Zhang, Y.; Wang, L.; Huang, J.; She, H.; Wang, Q., Electronegative Cl- modified BiVO4 photoanode synergized with nickel hydroxide cocatalyst for high-performance photoelectrochemical water splitting. *Chemical Engineering Journal* **2023**, *454*, 140081.

3. Shuai, L.; Tian, L.; Huang, X.; Dou, J.; Yu, J.; Chen, X., Enhanced charge carrier separation and stable photoelectrochemical water splitting via a high-performance BiVO4/BiOBr Type-II heterojunction. *International Journal of Hydrogen Energy* **2024**, *88*, 19-28.

4. Soundarya Mary, A.; Murugan, C.; Mahendiran, D.; Murugan, P.; Pandikumar, A., Investigation of Mn incorporation into NiOOH electrocatalyst loaded on BiVO4 photoanode for enhanced photoelectrochemical water splitting: Experimental and theoretical approach. *Materials Today Energy* **2024**, *41*, 101541.

5. Yang, J.; Tao, Z.; Zhao, Q.; Li, J.; Liu, G., Synergistic effect of FeOOH cocatalyst and Al2O3 passivation layer on BiVO4 photoanode for enhanced photoelectrochemical water oxidation. *Journal of Alloys and Compounds* **2025**, *1010*, 177461.

6. Wang, M.; Wu, L.; Geng, L.; Gao, L.; Ge, J.; Niu, H.; Li, H.; Jin, J., Bifunctional NiCo-LDH cocatalyst with hole extraction and high catalytic activity for boosting photoelectrochemical water oxidation of Nd doped BiVO4 photoanode. *Journal of Alloys and Compounds* **2024**, *987*, 174183.

7. Wang, J.; Bai, J.; Zhang, Y.; Li, L.; Zhou, C.; Zhou, T.; Li, J.; Zhu, H.; Zhou, B., Unconventional Substitution for BiVO4 to Enhance Photoelectrocatalytic Performance by Accelerating Polaron Hopping. *ACS Applied Materials & Interfaces* **2023**, *15* (11), 14359-14368.