Electronic Supporting Information

Enhanced coke-resistance of Ca- and Mg-incorporated Mo/V montmorillonite-supported catalysts during gas-phase glycerol conversion to allyl alcohol

Dajian Li^{1,2}, Alfin Kurniawan^{1,2,3}, Tania Roy^{1,3}, Jin Wang^{1,2}, Chenglan Liu^{1,2}, Zezhen Wang^{1,2}, Rongzhen Mu^{1,2}, Chunhui Zhou^{1,2,3,*}

- ¹ Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- ² Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007, China
- ³ Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals (QYIM), Youhua, Qingyang, Chizhou 242804, China

Figure S1. The nitrogen isotherms of the prepared catalysts

Sample	Peak retention time (min)	
Acetaldehyde	2.00~2.10	
Acrolein	2.75~2.85	
Methanol	305~3.15	
Ethanol	3.60~3.70	
Allyl alcohol	6.70~6.80	
Acetone alcohol	11.20~11.30	
1,2-propanediol	17.30~17.40	
1,3-propanediol	18.10~18.20	
Glycerol	30.80~31.15	

Table S1. Peak retention time of the sample to be tested

Note: Detector: Column model: FFAP (30 m \times 0.32 mm \times 0.5 μ m); Gasification chamber temperature: 300 °C; Injection volume: 1 μ L; Column flow rate: 12 mL/min; Split ratio: 40:1 (The peak retention time of the sample was obtained by GC testing using a 1% standard solution)

Table S2	Performance	comparison	of the reported	catalysts in t	he conversion of
----------	-------------	------------	-----------------	----------------	------------------

Catalysts	Conv. (%)	Sel.Allyl Alcohol	SBET	Acid site concentration	References
		(%)	$(m^2 g^{-1})$	(mmol/g)	
Ca0.5Mg0.5(7)-Cat.	81.0	46.2	/	0.214	This study
Mo/KIT-6 ^a	98.7	16.6	433.3	0.231	
Fe/KIT-6 ^a	74.7	5.6	515.0	0.135	1
MoFe0.3/KIT-6	94.0	26.8	457.9	0.225	
ZrO ₂ –FeO _x	100.0	13.7	/	/	2
MoFe-N	71.3	14.6	6.27	0.314	
MoFe/c-CeO ₂	71.7	22.9	23.2	0.148	3
MoFe/p1-CeO2	81.0	24.5	20.5	0.234	
MoFe/p2-CeO2	97.1	23.3	41.8	0.339	
H-ZSM-5/Fe/Rb	99.9	11.9	/	/	4
CoFe11-ZIF-R	89.7	68.7	/	0.105	5
CuMoAl	~82	15%	159	/	6
Mo ₈ V ₂ -Ca ₂ MMT	86.5	31.6	/	/	7
BEA/Cs/V	20	30	496		8

glycerol to allyl alcohol

References

- H. Lan, X. Xiao, S. L. Yuan, B. Zhang, G. L. Zhou and Y. Jiang, *Catal Lett*, 2017, 147, 2187-2199.
- E. Arceo, P. Marsden, R. G. Bergman and J. A. Ellman, *Chem. Commun.*, 2009, DOI: 10.1039/B907746D, 3357-3359.
- 3. H. Lan, J. Zeng, B. Zhang and Y. Jiang, Res Chem Intermed, 2019, 45, 1565-1580.
- Y. Liu, H. R. Tüysüz, C. J. Jia, M. Schwickardi, R. Rinaldi, A. H. Lu, W. Schmidt and F. Schüth, *Chem. Commun.*, 2010, 46, 1238-1240.
- 5. H. Zhao, Y. Jiang, H. Liu, Y. Long, Z. Wang and Z. Hou, *Applied Catalysis B:* Environmental, 2020, 277, 119187.
- R. C. R. Santos, D. M. V. Braga, A. N. Pinheiro, E. R. Leite, V. N. Freire, E. Longhinotti and A. Valentini, *Catalysis Science & Technology*, 2016, 6, 4986-5002.
- C. C. Li, D. J. Li, S. T. Yin, Z. Z. Wang, C. L. Liu and C. H. Zhou, *Applied Catalysis A: General*, 2023, 665, 119355.
- 8. R. Almeida, M. F. Ribeiro, A. Fernandes and J. P. Lourenço, *Catalysis Communications*, 2019, **127**, 20-24.