Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

General experimental procedure

All reactions and manipulations were carried out under a nitrogen atmosphere using standard Schlenk line or nitrogen-filled glove box. Petroleum ether (boiling point 40-60 °C) and other solvents were purified by distillation under a nitrogen atmosphere according to the standard procedures. Reagents were sourced from commercial suppliers and used without further purification. (9-BBN)₂ was synthesized according to the reported method.^{1 1}H NMR (400 MHz or 500 MHz), ¹³C {¹H} NMR (125.75 MHz) and ¹¹B NMR (160.46 MHz) were recorded at room temperature. ¹H NMR chemical shifts were referenced to the residual proton signal in the deuterated solvent and ¹³C {¹H} chemical shifts were referenced to the carbon signal of DMSO for samples recorded with D₂O capillary or to the signal of carbon of CDCl₃. For ¹¹B NMR, BF₃•OEt₂ in CDCl₃ was employed as an external standard (0.0 ppm). All chemical shifts are reported in parts per million (ppm), and coupling constants are expressed in Hertz (Hz). High resolution mass spectra (ESI+/–) were obtained using Agilent AdvanceBio 6545XT LC/Q-TOF system. GC-MS analyses were performed on a Thermo Scientific TRACE 1300 system with an ISQ mass detector and the capillary column of TG-5MS (30 m × 0.25 mm × 0.25 µm, 5% phenyl methylpolysiloxane, 330/350 °C).

Experimental procedure for monitoring of the CO₂ reduction in J. Young NMR tube

Inside a nitrogen filled glove box, 9-BBN (0.040 g, 0.3278 mmol), DMSO (1.7 μ L, 7.3 mol%) and mesitylene (10.4 μ L, 0.0749 mmol) were taken in a J. Young NMR tube, and then benzene (0.5 mL) was added. Subsequently, the NMR tube was taken out of the glove box and degassed by the freeze-pump-thaw method three times and filled with carbon dioxide, and the resulting reaction mixture was monitored by ¹H NMR method for every half an hour for the total of 16 h. After every half an hour, NMR tube was re-exposed to CO₂ (balloon, 1 atm) and spectra were recorded.

Figure S1. The change in the NMR yield of bis(boryl)acetal **B** and methoxyborane **C** as the % of DMSO in toluene (DMSO v/v%) changes.

X-ray structures and refinement data

The suitable single crystals of compound **E** were obtained by layering a toluene solution with petroleum ether. Data collection was performed using a Bruker D8 QUEST CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The space group for every structure was obtained by XPREP program. The structures were solved by SHELXT² which successfully located most of the nonhydrogen atoms. Subsequently, least-squares refinements were carried out on F^2 using SHELXL Version 2018/3³ to locate the remaining nonhydrogen atoms. Nonhydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were fixed in calculated positions. The crystal structure was plotted using the ORTEP3 programme. The refinement data for the structure is summarized in Table S1. Crystallographic data were deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. This data can be obtained free of charge upon quoting the depository number CCDC 2382681 from website at http://www.ccdc.cam.ac.uk.

Tabla S1	Crystallograph	nia data fai	· IHCOORBNIIDMSO	adduct F
Table SI.	Ci ystanogi api	ne uata ioi		auuuci, E

Complex	Ε	
Empirical formula	$C_{11}H_{21}BO_3S$	
Formula wt.	244.15	
Temp, K	120.0	
Crystal system	monoclinic	
Space group	$P2_{1}/c$	
<i>a</i> , Å	13.0315(18)	
b, Å	6.5150(9)	
<i>c</i> , Å	15.3340(19)	
α, (°)	90	
β, (°)	98.689(4)	
γ, (°)	90	
Volume, Å ³	1286.9(3	
$ ho_{calc}$, g/cm ³	1.260	
Ζ	4	
Crystal size/mm	$0.74 \times 0.136 \times 0.108$	
θ range (°)	2.687 to 24.992	
λ, Å	0.71073	
R _{int}	0.1306	
$\operatorname{GOF}(F^2)$	1.026	
R_{I}	0.0548	
wR_2	0.1094	

For Table 1

Figure S2. ¹H NMR (DMSO solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

Figure S3. ¹³C{¹H} NMR (DMSO solution with D₂O capillary, 125.75 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

Figure S4. ¹¹B NMR (DMSO solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (2.0 mL) under CO_2 (1 atm, balloon) for 2 h at 25 °C.

Figure S5. ¹H NMR (DMSO solution with D₂O capillary, 500 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (1.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S6. ¹H NMR (DMSO solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of HBcat (1.0 mmol) and DMSO (2.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S7. ¹³C{¹H} NMR (DMSO solution with D₂O capillary, 125.75 MHz, 25 °C) spectrum of reaction mixture of HBcat (1.0 mmol) and DMSO (2.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S8. ¹H NMR (DMSO solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of HBpin (1.0 mmol) and DMSO (2.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S9. ¹³C{¹H} NMR (DMSO solution with D₂O capillary, 125.75 MHz, 25 °C) spectrum of reaction mixture of HBpin (1.0 mmol) and DMSO (2.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S10. ¹H NMR (THF solution with D_2O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and THF (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S11. ¹¹B NMR (THF solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and THF (2.0 mL) under CO₂ (1 atm, balloon) for h at 25 °C.

Figure S12. ¹H NMR (DCM solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DCM (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S13. ¹¹B NMR (DCM solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DCM (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S14. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and toluene (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S15. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and toluene (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S16. ¹H NMR (benzene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and benzene (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S17. ¹¹B NMR (benzene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and benzene (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S18. ¹H NMR (n-hexane solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and n-hexane (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S19. ¹¹B NMR (n-hexane solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and *n*-hexane (2.0 mL) under CO₂ (1 atm, balloon) for 14 h at 25 °C.

Figure S20. ¹H NMR (DMF solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMF (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S21. ¹³C{¹H} NMR (DMF solution with D₂O capillary, 125.75 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMF (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

Figure S22. ¹¹B NMR (DMF solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMF (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

Figure S23. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of the 1:1 molar reaction mixture of 9-BBN (0.030 g, 0.245 mmol) and DMF (19.1 μ L, 0.246 mmol) in toluene (0.5 mL) at 25 °C. Within 10 minutes spectrum was recorded.

Figure S24. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (71 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 1 h at 25 °C.

Figure S25. ¹³C{¹H} NMR (toluene solution with D₂O capillary, 125.75 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (71 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 1 h at 25 °C.

Figure S26. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (71 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 1 h at 25 °C.

For Table 2

Figure S27. ¹H NMR (toluene solution with D₂O capillary, 500 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (20 μ L, 28 mol%) in toluene (0.5 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S28. ¹H NMR (toluene solution with D₂O capillary, 500 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (10.7 μ L, 15 mol%) in toluene (0.5 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S29. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (10.7 μ L, 15 mol%) in toluene (0.5 mL) under CO₂ (1 atm, balloon) for 16 h at 25 °C.

Figure S30. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (10.7 μ L, 15 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S31. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (5 μ L, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S32. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (5 μ L, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S33. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2 μ L, 4.5 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 16 h at 25 °C.

Figure S34. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2 μ L, 4.5 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 24 h at 25 °C.

Figure S35. ¹³C{¹H} NMR (toluene solution with D₂O capillary, 125.75 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2μ L, 4.5 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 24 h at 25 °C.

Figure S36. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2 μ L, 4.5 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 24 h at 25 °C.

Figure S37. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2μ L, 4.5 mol%) in THF (2.0 mL) under CO₂ (1 atm, balloon) for 16 h at 25 °C.

Figure S38. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2μ L, 4.5 mol%) in THF (2.0 mL) under CO₂ (1 atm, balloon) for 16 h at 25 °C.

Figure S39. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (20 μ L, 28 mol%) in THF (2.0 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S40. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (20 μ L, 15 mol%) in THF (0.5 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S41. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (10.7 μ L, 15 mol%) in THF (0.5 mL) under CO₂ (1 atm, balloon) for 3 h at 25 °C.

Figure S42. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (5 μ L, 7 mol%) in THF (0.5 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S43. ¹³C{¹H} NMR (toluene solution with D₂O capillary, 125.75 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (5 μ L, 7 mol%) in THF (0.5 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S44. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (5 μ L, 7 mol%) in THF (0.5 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S45. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2μ L, 4.5 mol%) in THF (0.5 mL) under CO₂ (1 atm, balloon) for 16 h at 25 °C.

Figure S46. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO (3.2μ L, 4.5 mol%) in THF (0.5 mL) under CO₂ (1 atm, balloon) for 16 h at 25 °C.

Isolation of DMSO adduct of formoxyborane and mechanism NMR data

Figure S47. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of 1:1 reaction mixture of 9-BBN (0.278 mmol) and DMSO (20 μ L, 0.281 mmol) in toluene (0.5 mL) at 25 °C.

Figure S48. ¹¹B NMR (toluene solution with D_2O capillary, 160.46 MHz, 25 °C) spectra of 9-BBN as monomer in presence of different quantities of DMSO and water in toluene (0.5 mL) at 25 °C.

The ¹¹B NMR spectrum of reaction mixture of 9-BBN and DMSO in 1:8 mole ratio in toluene, respectively, revealed a minor peak at 35.5 ppm along with peaks for free 9-BBN (27.7 ppm, minor) and a B–O adduct (7.8 ppm, major) (Fig. S48, f) which is given in the main text of the manuscript (Fig. 2, f). When this experiment was repeated with 0.9 equivalents of H₂O relative to 9-BBN, the peak near 35 ppm was intensified while the peak for B-O adduct was diminished (Fig. S48, e). This confirms that the peak around 35 ppm arises from the hydrolysis of 9-BBN, giving 9-BBN-OH. To confirm this further, a few more experiments were performed. The ¹¹B NMR spectrum of the 1:1 ratio mixture of 9-BBN and DMSO in toluene showed a minor peak at 51.7 ppm along with additional peaks (free 9-BBN at 27.7 and B-O adduct 8.3 ppm) (Fig S48, b). In a separate NMR tube, one equiv of 9-BBN was taken to which 0.2 equiv of H₂O, one equiv of DMSO and toluene (0.5 mL) were added in sequence and its ¹¹B NMR spectrum showed that the peak at 51.7 ppm is intensified (Fig S48, c), suggesting that this peak is due to the product of hydrolysis of 9-BBN by water. Interestingly, from two more additional experiments, we observed that the chemical shift of 9-BBN-OH is influenced by the ratio of DMSO (Fig. S48, a-f), as also observed in the spectra given in the manuscript (Fig. 2, a-f).

Without DMSO, the 1:1 reaction mixture of 9-BBN and H_2O in toluene exhibited a peak at 56.2 ppm (Fig. S48, a) consistent with the formation of 9-BBN-OH (Ref.: K. Matos and J. A. Soderquist, J. Org. Chem., 1998, 63, 461–470). However, with increasing equiv of DMSO (1, 2 and 8 equiv) relative to 9-BBN (Fig S48 c,d,e), this resonance gradually shifts to ~52 ppm, ~46 ppm, and ~36 ppm, respectively (Fig S48 c,d,e) which is closer to the minor peak at 35.5 ppm observed in Fig. S48 f, and confirms the formation of DMSO coordinated 9-BBN-OH adduct.

This can be clearly understood by the reactions given below. The presence of adventitious water in the reaction between 9-BBN and varying quantities of DMSO in benzene (Fig 2, manuscript main text) generate 9-BBN-OH and H₂. 9-BBN-OH in toluene gives a resonance at 56.2 ppm. However, the presence of DMSO in the reaction shifts the resonance up field by dative bonding to 9-BBN-OH, forming an adduct 9-BBN-OH:DMSO N. As the number of equiv of DMSO increases, this resonance moves to 35.6 ppm (Fig S48 e). This suggests the existence of an equilibrium between the adduct 9-BBN-OH:DMSO and reactants as given below. In addition, the initially formed 9-BBN-OH can react with free 9-BBN in the reaction mixture to give 9-BBN-O-BBN-9 which can also form an adduct **O** with DMSO in an equilibrium.

Figure S49. ¹H NMR (CDCl₃, 500 MHz, 25 °C) spectrum of [HCOOBBN][DMSO] (E).

Figure S50. ¹³C{¹H} NMR (CDCl₃, 125.75 MHz, 25 °C) spectrum of [HCOOBBN][DMSO] (E).

Figure S51. ¹¹B NMR (CDCl₃, 160.46 MHz, 25 °C) spectrum of [HCOOBBN][DMSO] (E).

Figure S52. ¹H NMR (toluene solution with D₂O capillary, 500 MHz, 25 °C) spectrum of the 1:1 ratio reaction mixture of compound **E** (0.020 g, 0.082 mmol) and 9-BBN (0.010, 0.082 mmol) in toluene (0.5 mL) after 6 h at 25 °C.

Figure S53. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of the 1:2 ratio reaction mixture of compound **E** (0.020 g, 0.082 mmol) and 9-BBN (0.020, 0.164 mmol) in toluene (0.5 mL) after 6 h at 25 °C.

Figure S54. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of the 1:2:2 ratio reaction mixture of compound **E** (0.020 g, 0.082 mmol), 9-BBN (0.020, 0.164 mmol) and DMSO (11.7 μ L, 0.164 mmol) in toluene (0.5 mL) after 6 h at 25 °C.

Figure S55. ¹H NMR (DMSO solution with D_2O capillary, 400 MHz, 25 °C) spectrum of the 1:2 ratio reaction mixture of compound **E** (0.020 g, 0.082 mmol) and 9-BBN (0.020, 0.164 mmol) in DMSO (0.5 mL) after 6 h at 25 °C.

Figure S56. ¹H NMR (benzene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (0.040 g, 0.3278 mmol), DMSO (1.7μ L, 7.3 mol%) and mesitylene (10.4μ L, 0.0749 mmol) in benzene (0.5μ L) under CO₂ (1 atm, balloon) for 16 h at 25 °C.

For Table 3

Figure S57. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and diethylsulfoxide (DESO, 7.4 μ L, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S58. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and diethylsulfoxide (DESO, 7.4 μ L, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

f1 (ppm)

Figure S59. ¹¹B NMR (benzene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of 1:1 molar reaction mixture of 9-BBN (0.030 g, 0.245 mmol) and diethylsulfoxide (DESO, 23.8 μ L, 0.246 mmol) in benzene (0.5 mL) at 25 °C.

Figure S60. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and tetrahydrothiophene-1-oxide (THTO, 6.3 μ L, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S61. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and tetrahydrothiophene-1-oxide (THTO, 6.3 μ L, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S62. ¹¹B NMR (benzene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of the 1:1 molar reaction mixture of 9-BBN (0.030 g, 0.245 mmol) and tetrahydrothiophene-1-oxide (THTO, 22.2 μ L, 0.246 mmol) in benzene (0.5 mL) at 25 °C.

Figure S63. ¹H NMR (toluene solution with D₂O capillary, 500 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and diphenylsulfoxide (DPSO, 14.2 mg, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S64. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and diphenylsulfoxide (DPSO, 14.2 mg, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S65. ¹¹B NMR (benzene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of the 1:1 molar reaction mixture of 9-BBN (0.030 g, 0.245 mmol) and diphenylsulfoxide (DPSO, 0.050 g, 0.247) in benzene (0.5 mL) at 25 °C.

Figure S66. ¹H NMR (toluene solution with D₂O capillary, 500 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO₂ (6.6 mg, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S67. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO₂ (6.6 mg, 7 mol%) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S68. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and DMSO₂ (6.6 mg, 7 mol%) in THF (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S69. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and dimethylsulfone (DMSO₂, 6.6 mg, 7 mol%) in THF (2.0 mL) under CO₂ (1 atm, balloon) for 6 h at 25 °C.

Figure S70. ¹¹B NMR (benzene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of the 1:1 molar reaction mixture of 9-BBN (0.030 g, 0.245 mmol) and dimethylsulfone (DMSO₂, 0.023 g, 0.244) in benzene (0.5 mL) at 25 °C.

Figure S71. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and dimethylsulfide (DMS, 74.0 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C. No CO₂ reduced products were formed.

Figure S72. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and dimethylsulfide (DMS, 74.0 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

Figure S73. ¹¹B NMR (toluene solution with D₂O capillary, 160.46 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (0.25 mmol) and dimethylsulfide (DMS, 74.0 μ L, 1.0 mmol) in toluene (0.5 mL) at 25 °C.

Figure S74. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and tetrahydrothiophene (THT, 88.1 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C. No CO₂ reduced products were formed.

Figure S75. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and tetrahydrothiophene (THT, 88.1 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

Figure S76. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (0.25 mmol) and tetrahydrothiophene (THT, 88.1 μ L, 1.0 mmol) in toluene (0.5 mL) at 25 °C.

Figure S77. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and pyridine (80.6 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C. No CO₂ reduced products were formed.

Figure S78. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (1.0 mmol) and pyridine (80.6 μ L, 1.0 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C.

Figure S79. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (0.25 mmol) and pyridine (80.6 μ L, 1.0 mmol) in toluene (0.5 mL) at 25 °C.

For C-methylenation of indoles

Figure S80. ¹H NMR (CDCl₃, 400 MHz, 25 °C) spectrum of di(1*H*-indol-3-yl)methane.⁴

Figure S81. HRMS (ESI+) spectrum of di(1*H*-indol-3-yl)methane.

Figure S82. ¹H NMR (CDCl₃, 400 MHz, 25 °C) spectrum of bis(6-chloro-1*H*-indol-3-yl)methane.

Figure S83. ¹H NMR (CDCl₃, 400 MHz, 25 °C) spectrum of bis(5-bromo-1*H*-indol-3-yl)methane.⁵

Figure S84. HRMS (ESI+) spectrum of bis(5-bromo-1*H*-indol-3-yl)methane.

Figure S85. ¹H NMR (acetone- d_6 , 400 MHz, 25 °C) spectrum of bis(5-nitro-1*H*-indol-3-yl)methane.

Figure S86. HRMS (ESI+) spectrum of bis(5-nitro-1*H*-indol-3-yl)methane.

Figure S87. ¹H NMR (CDCl₃, 400 MHz, 25 °C) spectrum of bis(5-methoxy-1*H*-indol-3-yl)methane.⁵

Figure S88. HRMS (ESI+) spectrum of bis(5-methoxy-1*H*-indol-3-yl)methane.

Figure S89. HRMS (ESI+) spectrum of bis(5-hydroxy-1*H*-indol-3-yl)methane. m/z calculated for $[M+H]^+ C_{17}H_{15}N_2O_2^+ 279.1128$, observed 279.1123.

Figure S90. ¹H NMR (CDCl₃, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (0.122 g, 0.999 mmol), *N*-methylindole (41.6 μ L, 0.333 mmol) and DMSO (71 μ L, 0.999 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 25 °C. After 2 h, solvent was evaporated under reduced pressure and residue was dissolved in CDCl₃ (0.6 mL) and 1,1,2,2-tetrachloroethane (TCE, 30.0 μ L, 0.284 mmol) was added as an internal standard.

Figure S91. ¹H NMR (CDCl₃, 400 MHz, 25 °C) spectrum of 3,3'-methylenebis(1-methylindole).⁵

Figure S92. HRMS (ESI+) spectrum of 3,3'-methylenebis(1-methylindole).

Data for control experiments for C-methylation of indoles

Figure S93. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (0.147 g, 1.204 mmol) and indole (0.039g, 0.333 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 12 h at 80 °C. After 12 h, 1,1,2,2-tetrachloroethane (TCE, 42 μ L, 0.395 mmol) was added as an internal standard. No product formation.

Figure S94. ¹H NMR (toluene solution with D₂O capillary, 400 MHz, 25 °C) spectrum of the CO₂ reduction [(mixture of 9-BBN (0.147 g, 1.204 mmol) and DMSO (71 μ L, 0.999 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 80 °C)]. After 2 h, 1,1,2,2-tetrachloroethane (TCE, 42 μ L, 0.395 mmol) was added as an internal standard.

Figure S95. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of the CO₂ reduction [(mixture of 9-BBN (0.147 g, 1.204 mmol) and DMSO (71 μ L, 0.999 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 2 h at 80 °C)].

Figure S96. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of reaction mixture of 9-BBN (0.6 mmol), indole (0.5 mmol), indole-3-carboxyaldehyde (0.5 mmol) and DMSO (1.0 mmol) in toluene (2.0 mL) under N₂ for 4 h at 80 °C. (K. Matos and J. A. Soderquist, J. Org. Chem., 1998, 63, 461–470).

Figure S97. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of C-methylenation reaction mixture of 9-BBN (0.147 g, 1.204 mmol), indole (0.039g, 0.333 mmol) and DMSO (71 μ L, 0.999 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 4 h at 80 °C). (K. Matos and J. A. Soderquist, J. Org. Chem., 1998, 63, 461–470).

Figure S98. GC-MS spectrum of the *C*-methylenation of indole reaction [(mixture of 9-BBN (0.147 g, 1.204 mmol), indole (0.039g, 0.333 mmol) and DMSO (71 μ L, 0.999 mmol) in toluene (2.0 mL) under CO₂ (1 atm, balloon) for 4 h at 80 °C)]. BBN-OH (C₈H₁₅BO): *m*/*z* = 138.12(calc) and 138.11 (found).

Figure S99. ¹¹B NMR (toluene solution with D₂O capillary, 128.37 MHz, 25 °C) spectrum of reaction mixture of **E** (0.082 mmol), *N*-methylindole (0.081 mmol) in toluene (0.5 mL) under N₂ for 1 h at 80 °C. This is for the reaction (v) in Fig 8.

Figure S100. HRMS (ESI+) spectrum of reaction mixture of 9-BBN (1.2 mmol), indole (0.333 mmol) and DMSO (1.0 mmol) in toluene (2.0 mL) under CO_2 (1 atm, balloon) for 1 h at 80 °C.

Computational details

The coordinates of molecule **E** are extracted from the SC-XRD experiment, and the positions of hydrogen atoms are optimized by freezing the coordinates of non-hydrogen atoms. The H-atoms positions optimization was carried out using Gaussian 9 program, NBO analysis was carried out using NBO version 3.1. The NCI calculation was performed using Multiwfn_3.8 program. The NCI plot was generated using VMD 1.9.4 and the scatter plot was plotted using gnuplot 6.0 and IrfanView programs. The coordinates of the hydrogen atoms position optimized structure of **E** is given below. The NBO analysis of **E** showed no second order interaction with significant energy contribution. The NCI analysis also showed weak Van der Waals interactions and steric repulsion interactions.

Figure S101. The molecular graph of E obtained from the Non-Covalent Interaction methods.

Coordinates of E

S	3.443200262538	3.459200264751	8.485300671585
0	3.950605302102	1.855502142211	6.024698484758
0	2.504001193082	2.324600178306	7.950100591725
0	5.672700415186	0.469706035883	5.898397475277
С	4.543995347419	0.712692055959	6.242105454067
Η	3.931163298223	-0.035676002715	6.777223511453
С	1.956198148484	3.350698253751	5.584100427139
Η	2.577017196902	4.246282322674	5.765657437031
С	1.508199113112	0.867097065873	6.094101456826
Η	1.790529135150	-0.042263003252	6.644718533740
С	2.098703158008	3.032700229894	4.080199312811
Η	1.698906132108	3.858548294339	3.475735265164
Н	3.168812243781	2.979995228956	3.857263293226
С	1.632203122909	0.529701039225	4.591699348182
Н	2.625874200805	0.104079007850	4.413973338152

Η	0.919705068621	-0.262635020103	4.325183327847
С	2.316600177199	4.581300348476	9.263100685388
Η	1.774903134249	5.100144390377	8.474015649244
Η	2.889396220934	5.305346415614	9.846720748119
Η	1.620933123909	4.029870307137	9.896735777055
С	0.086300006448	1.211801093831	6.546701519041
Η	0.085069006285	1.293668100442	7.641124579579
Η	-0.602741046524	0.390322029997	6.307021479322
С	4.141500316607	2.686800203144	9.916400744476
Η	3.347750254923	2.242222171684	10.517670826418
Η	4.699924361351	3.432225263980	10.485598822134
Η	4.824904369790	1.914416143856	9.563749723097
С	0.520799039622	3.688802282516	6.014700474404
Η	0.535630041666	4.054878308448	7.050392533374
Η	0.127799009729	4.524210346723	5.418075404519
С	-0.474899036381	2.520699190671	5.955599472103
Η	-0.794291060753	2.356102179316	4.925733374181
Η	-1.385959105092	2.798907212986	6.499758522788
С	1.433596112015	1.721301130248	3.631902276563
Η	1.830253137705	1.446475111482	2.647386203204
Η	0.366305027916	1.885250142895	3.470662265132
В	2.491199188905	2.084800158230	6.398199513090

REFERENCES

- 1. J. A. Soderquist, A. Negron, 9-BORABICYCLO[3.3.1]NONANE DIMER. Org. Synth. 1991, 70, 169.
- 2. G. M. Sheldrick, Acta Cryst. Sect. A: Found. Crystallogr., 2015, 71, 3.
- 3. G. M. Sheldrick, Acta Cryst. Sect. C: Struct. Chem., 2015, 71, 3.
- Z. Guo, J. Wu, X. Wei, and C. Xi, Selective C-Methylenation of N-Unsubstituted Indoles Using CO₂ under NaBH₄/I₂ System. *ChemSusChem* 2024, e202401491.
- T. Murata, M. Hiyoshi, S. Maekawa, Y. Saiki, M. Ratanasak, J. Hasegawa, T. Ema, Deoxygenative CO₂ conversions with triphenylborane and phenylsilane in the presence of secondary amines or nitrogen-containing aromatics. *Green Chem.* 2022, 24, 2385–2390.