Supplementary Materials

Preparation and Characterization of Highly Dispersed Ru/CeZrO₂ Catalyst for CO₂ Methanation with Improved Activity

Weiwen Yan^a, Menghui Liu^a, Mengxing Li^a, Liangkai Xu^a, and Chang-jun Liu^{a,b}*

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

^bCollaborative Innovation Center of Chemical Science & Engineering, Tianjin

University, Tianjin, China.

*Corresponding Author: Chang-jun Liu E-mail: cjl@tju.edu.cn

This document contains the effect of Ce/Zr ratio on the activity (Figure S1), volumetric CO chemisorption of (a) Ru/CeZrO₂-C and (b) Ru/CeZrO₂-P (Figure S2), EDX mappings of (1) Ce and (2) Zr on (a) Ru/CeZrO₂-P, (b) Ru/CeZrO₂-C, (c) Ru/CeZrO₂-P - P-spent, and (d) Ru/CeZrO₂-C-spent (Figure S3), EPR spectra of Ru/CeZrO₂-P and Ru/CeZrO₂-C (Figure S4), the XPS spectra of Ru 3p over Ru/CeZrO₂-P catalyst after the 100-h stability test (Figure S5), Quasi *in-situ* XPS spectra of O 1s on (a) Ru/CeZrO₂-P (b) Ru/CeZrO₂-C (Figure S6), comparison with the reported Ru catalysts for CO₂ methanation (Table S1), Quasi *in-situ* XPS results of the concentration of Ce³⁺ (%) (Table S2), assignments of the bands of *in-situ* DRIFT experiments on the catalysts (Table S3).

Figure S1. The effect of Ce/Zr molar ratio on CO₂ methanation activity.

The dispersion of Ru was calculated based on the volume of chemisorbed CO by using the following equation:

$$D\% = \frac{V_{\rm ad} \times M_{\rm metal} \times {\rm SF}}{{\rm p} \times V_{\rm m} \times {\rm d_r}}$$

where *D* denotes the dispersion of Ru particles; V_{ad} (ml g⁻¹) is volume of chemisorbed CO at STP; M_{metal} is the molecular weight of Ru (101.07 g mol⁻¹); *SF* is the stoichiometric factor (Ru:CO molar ratio in the chemisorption experiment) which is taken as 1; p is the weight fraction of Ru in the catalysts as determined by ICP-OES; V_m is molar volume of CO (22.4 L mol⁻¹) at standard temperature and pressure (STP); d_r is the reduction degree of Ru, determined by quasi *in-situ* XPS analysis.

Figure S2. Volumetric CO chemisorption of (a) Ru/CeZrO₂-C and (b) Ru/CeZrO₂-P. (The number of pulses needed for Ru/CeZrO₂-P and Ru/CeZrO₂-C are approximately 13. The peak intensity rises steadily in the first pulses of the CO adsorption period until saturation, when it stabilizes at a constant level. When the peak intensity stays

constant for three times, the pulse experiment shuts down automatically.)

Figure S3. EDX mappings of (1) Ce and (2) Zr on (a) Ru/CeZrO₂-P, (b) Ru/CeZrO₂-C,

(c) Ru/CeZrO₂-P-spent, and (d) Ru/CeZrO₂-C-spent.

Figure S4. EPR spectra of Ru/CeZrO₂-P and Ru/CeZrO₂-C.

Figure S5. The XPS spectra of Ru 3p over Ru/CeZrO₂-P catalyst after 100-hr stability

test.

Figure S6. Quasi in-situ XPS spectra of O 1s on (a) Ru/CeZrO₂-P (b) Ru/CeZrO₂-C.

Supplementary Tables

Catalyst	Temperature (°C)	Pressure (atm)	$\begin{array}{c} GHSV\\ (cm^3 \ h^{-1}\\ g_{cat}^{-1}) \end{array}$	CO ₂ Conversion (%)	$\begin{array}{c} CH_4\\ formation\\ rate (\mu mol_{CH4}\\ g_{cat}^{-1} s^{-1}) \end{array}$	Ref.
RT001	300	1	5600	73.0	5.1	S 1
Ru/TiO ₂ (8-5)	300	1	24,000	41.5	12.3	S2
Ru/R-TiO ₂ - air-H ₂	300	1	12,000	89.2	19.9	S3
Ru/TiO ₂ -600	300	1	72,000	21.5	28.8	S4
Ti350Ru450	200	1	6000	12.6	2.1	S5
Ru(1%)-TiO ₂	300	1	400,000	7.6	73.9	S6
1.9wt% Ru- Mo-O _x	300	1	10,000	26.0	1.0	S7
Ru/CeO ₂ /r	300	1	72,000	73.0	65.2	S 8
Ru/CeO ₂	300	1	360	95.0	1.0	S9
Ru/α - Al_2O_3	300	1	360	51.0	0.5	S9
3Ru/CeO ₂	300	1	60,000	85.0	65.5	S10
Ru/CeO ₂ -P	300	1	60,000	85.0	100.2	S11
2Ru/CeZr(Ac Ac)	300	1	60,000	18.0	13.4	S12
Ru/CeZrO ₂ -P	300	1	60,000	89.9	107.0	This work

Table S1. Comparison with the reported Ru catalysts for CO_2 methanation.

	Ru/CeZrO ₂ -P	Ru/CeZrO ₂ -C
Pristine	15.5	12.4
After Reduction	40.1	16.9
200 °C	47.5	36.4
250 °C	54.2	42.9
300 °C	58.6	44.1

Table S2 Quasi *in-situ* XPS results of the concentration of Ce^{3+} (%).

Wavenumber (cm ⁻¹)	Assignments	Reference	
2060 cm ⁻¹	linear-CO*	S3, S13	
1610 cm ⁻¹	m-HCOO*	C14 C10	
1595 cm ⁻¹ , 1540 cm ⁻¹ , 1390 cm ⁻¹ , 1360 cm ⁻¹	b-HCOO*	514-518	
1500 cm ⁻¹ , 1440 cm ⁻¹	CO_3^*	S11, S19	
3015 cm ⁻¹ , 1302 cm ⁻¹	$CH_4(g)$	S7, S20	

Table S3. Assignments of the bands of *in-situ* DRIFT experiments on the catalysts.

References

- S1 Chai S, Men Y, Wang J, Liu S, Song Q, An W, Kolb G, J. CO2 Util. 2019, 33, 242-252.
- S2 Zhou Z, Li J, You Z, Appl. Surf. Sci. 2022, 587, 152856.
- S3 Zhou J, Gao Z, Xiang G, Zhai T, Zhao W, Liang X, Wang L, Nat. Commun. 2022, 13(1), 327.
- S4 Zhao Z, Jiang Q, Wang Q, Wang M, Zuo J, Chen H, Kuang Q, Xie Z, ACS Sustainable Chem. Eng. 2021, 9(42), 14288-14296.
- S5 Kim A, Sanchez C, Haye B, Boissière C, Sassoye^{*} C, Debecker^{*} D P, ACS Appl. Nano Mater. 2019, **2**(5), 3220-3230.
- S6 Moon W K, Lee Z H, Hwangbo M, Docao S, Kim M G, Yoon K B, *J. Catal.* 2022, **413**, 221-238.
- S7 Xin H, Lin L, Li R, Li D, Song T, Mu R, Fu Q, Bao X, J. Am. Chem. Soc. 2022, 144(11): 4874-4882.
- S8 Sakpal T, Lefferts L, J. Catal. 2018, 367: 171-180.
- S9 Wang F, He S, Chen H, Wang B, Zheng L, Wei M, Evans D G, Duan X, J. Am. Chem. Soc. 2016, 138(19): 6298-6305.
- S10 López-Rodríguez S, Davó-Quiñonero A, Bailón-García E, Lozano-Castelló D, Bueno-López A, Mol. Catal. 2021, 515, 111911.
- S11 Li M, Yan W, Liu M, Liu C, Improved activity of Ru/CeO₂ catalyst for CO₂ methanation by enhanced electronic metal-support interaction, *Energy Fuels* 2024,

https://doi.org/10.1021/acs.energyfuels.4c04980.

- S12 Renda, S.; Ricca, A.; Palma, V., Appl. Energy. 2020, 279, 115767.
- S13 Li J, Liu Z, Cullen D A, Hu W, Huang J, Yao L, Peng Z, Liao P, Wang R, ACS Catal. 2019, 9(12), 11088-11103.
- S14 Jia X, Zhang X, Rui N, Hu X, Liu C, Appl Catal, B. 2019, 244, 159-169.
- S15 Dai Y, Zou R, Ba T, Zhang J, Liu C, J. CO2 Util. 2021, 51, 101647.
- S16 Winter L R, Chen R, Chen X, Chang K, Liu Z, Senanayake S D, Ebrahim A M, Chen J G, *Appl Catal, B.* 2019, **245**, 360-366.
- S17 Aldana P A U, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger A.C, *Catal. Today.* 2013, **215**, 201-207.
- S18 El-Nagar G A, Yang F, Stojkovikj S, Mebs S, Gupta S, Ahmet L Y, Dau H, Mayer M T, ACS Catal. 2022, **12**(24), 15576-15589.
- S19 Pathak A K, Maity D K, J. Phys. Chem. 2009, 113(48), 13443-13447.
- S20 Liu Z, Zhang F, Rui N, Li X, Lin L, Betancourt L E, Su D, Xu W, Cen J, Attenkofer
 - K, Idriss H, Rodriguez^{*} J A, Senanayake^{*} S D, *ACS Catal.* 2019, **9**(4), 3349-3359.