Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

belonging to

Enhancing activity and selectivity of palladium catalysts in ketone α-arylation by tailoring the imine chelate of pyridinium amidate (PYA) ligands

Esaïe Reusser^a, Michael Aeschlimann^a and Martin Albrecht^{*a}

^a Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland

Email: martin.albrecht@unibe.ch

Contents

S.1	Synthetic procedures
S.1.1	General information
S.1.2	Synthesis of precursor esters
S.1.3	Synthesis of carboxylic acids 1c-1g9
S.1.4	Synthesis of pyridine carboxamides 2a–2f
S.1.5	Synthesis of pyridinium iodide salts 3a–3g
S.1.6	Synthesis of pyridinium amidate (PYA) 4a–4g
S.1.7	Synthesis of PYA palladium complexes 5a–5g
S.2 Cryst	al structure determinations
S.3 Burie	d volume calculations
S.4 Catal	ytic procedures
S.4.1	General procedure for propiophenone α-arylation
S.4.2	Procedure for the acquisition of time-conversion profiles and TOF _{max} determination
S.4.3	General procedure for determining the order in palladium complex
S.4.4	Procedure for determining the rate order in substrates
S.4.5	Procedures for catalyst poisoning experiments 71
S.4.6	General procedure for temperature screening experiments
S.4.7	Procedure for evaluating air and moisture tolerance
S.4.8	Procedure for substrates refilling experiment
S.4.9	Procedure for catalyst recycling experiments
S.4.10	Studies on catalyst activation using 5d
S.4.11	General procedure for aryl chloride activation and competitive C-Br vs C-Cl conversion 80
S.5 References	

S.1 Synthetic procedures

S.1.1 General information

Phenyl azide and complex **5a** were prepared according to previously reported procedures.^{S1,S2} MeCN, tetrahydrofuran (THF) and CH_2Cl_2 were dried by passage through a solvent purification column. All other reagents and solvents were purchased from commercial vendors and used as received. Unless otherwise stated, all the reactions were run under exclusion of air using standard Schlenk techniques under an atmosphere of dry nitrogen and extra dry, stabilized 1,4-dioxane (99.8%) purchased from Thermoscientific was used for catalysis.

Unless otherwise specified, NMR spectra were recorded at 25 °C on Bruker spectrometers operating at 300 or 400 MHz (¹H NMR) and 75 or 101 MHz (¹³C{¹H} NMR), respectively. Chemical shifts (δ) are expressed in ppm downfield from SiMe₄ using the residual protonated solvent as an internal standard and coupling constants in Hz. Assignments are based on homo- and heteronuclear shift correlation spectroscopy.

High-resolution mass spectrometry was carried out with a Thermo Scientific LTQ Orbitrap XL (ESI-TOF) or a Thermo Scientific Q Exactive GC directly used with a direct injection probe (DIP). Elemental analyses were performed on a Thermo Scientific Flash 2000 CHNS-O elemental analyzer.. GC-FID reaction follow-up was achieved using an Agilent technologies 7820A GC System. GC-MS reaction follow-up was carried out on a Thermofisher ISQ7000 GC fitted with a Macherey-Nagel Optima delta-3-0.25 µm capillary column using Helium as a carrier gas, coupled to a quadrupole mass analyzer using EI mode at 70 eV.

S.1.2 Synthesis of precursor esters

Synthesis of prec-c

Phenyl azide (1.67 g, 14.0 mmol), copper(I) iodide (2.67 g, 14.0 mmol), THF (15 mL), and DMSO (0.3 mL) were charged in a pressure flask. Then 2,6-lutidine (3.25 mL, 28.0 mmol) was added followed by ethyl propiolate (4.26 mL, 42.0 mmol). The resulting mixture was stirred at 80 °C for 3 h. After cooling to room temperature the reaction mixture was poured into H₂O (50 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with HCl_{aq}(1 M, 100 mL) and brine (100 mL), dried over MgSO₄, concentrated to dryness, triturated with pentane (3 x 10 mL) and dried under vacuum to yield **prec-c** as an off-white solid. (2.46 g, 81%). Spectroscopic data are in agreement with literature values.^{S3 1}H NMR (300 MHz, DMSO-*d*₆, 298K) δ = 9.48 (s, 1H, *CH*_{trz}), 7.99 (dd, *J*_{HH} = 7.6, 1.8 Hz, 2H, *CH*_{Ph}), 7.57 (m, 3H, *CH*_{Ph}), 4.36 (q, ³*J*_{HH} = 7.1 Hz, 2H, *CH*₂), 1.34 (t, ³*J*_{HH} = 7.1 Hz, 3H, *CH*₃) ppm.

Figure S1: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 300 MHz) of **prec-c**.

Synthesis of prec-e

Ethyl 1H-pyrazole-3-carboxylate (3.00 g, 21.4 mmol), potassium carbonate (3.55 g, 25.7 mmol), and copper(I) iodide (408 mg, 2.14 mmol) were charged in a two-neck flask equipped with a condenser. The flask was then placed under a nitrogen atmosphere and 1,4-dioxane (30 mL) was added, followed by N,N⁻-dimethylethane-1,2-diamine (460 µL, 4.28 mmol) and iodobenzene (2.63 mL, 23.5 mmol). The resulting suspension was heated under vigorous stirring to 95 °C for 48 h. After cooling to room temperature, the suspension was washed with NH₄Cl_{aq} (sat., 2 x 100 mL) and brine (50 mL). The organic phase was concentrated under vacuum, and the residue was purified by gradient flash column chromatography (FCC; SiO₂; EtOAc:pentane, 0 to 100%) to yield **prec-e** as a yellow oil (3.68 g, 79 %). ¹H NMR (300 MHz, DMSO-*d*₆, 298K) $\delta = 8.63$ (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), 7.94 – 7.82 (m, 2H, C*H*_{phe}), 7.57 – 7.40 (m, 2H, C*H*_{phe}), 7.46 – 7.34 (m, 1H, C*H*_{phe}), 7.01 (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), 4.33 (q, ³*J*_{HH} = 7.0 Hz, 2H, C*H*₂), 1.32 (t, ³*J*_{HH} = 7.0 Hz, 3H, C*H*₃) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-*d*₆, 298K) $\delta = 161.48$ (CO), 144.29 (*C*_{prz}), 139.16 (*C*_{phe}), 129.83 (CH_{prz}), 129.67 (CH_{phe}) 127.48 (CH_{phe}), 119.22 (CH_{phe}), 110.20 (CH_{prz}), 60.49 (CH₂), 14.21 (CH₃) ppm. HR-MS (m/z): calculated for C₁₂H₁₃N₂O₂ [M+H]⁺ = 217.0977; found: 217.0968.

Figure S2: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 300 MHz) of prec-e.

Synthesis of prec-f

Ethyl 1H-pyrazole-3-carboxylate (2.00 g, 14.3 mmol), potassium carbonate (2.37 g, 17.1 mmol), copper(I) iodide (272 mg, 1.43 mmol) were charged in a 20 mL vial then 1,4-dioxane (10 mL), N¹,N²-dimethylethane-1,2-diamine (307 μ L, 2.85 mmol) and iodobenzene (2.27 mL, 15.7 mmol) were added under N₂. The resulting suspension was heated to 100°C and was vigourously stirred at that temperature for 16 h. After cooling down to room temperature, the suspension was washed twice with NH₄Cl_{aq} (sat., 2 x 50ml) and brine (25 mL). The organic phase was then concentrated under vacuo and purified by gradient FCC (SiO₂; EtOAc:pentane, 0 to 100%; rf 0.8 in 25 % EtOAc; 3rd fraction) to yield **prec-f** (3.16 g, 90 %) as a white powder. ¹H NMR (300 MHz, CD₃CN, 298K) δ = 8.15 (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), 7.43 (s, 2H, C*H*_{xyl}), 7.06 (s, 1H, C*H*_{xyl}), 6.95 (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), 4.37 (q, ³*J*_{HH} = 7.1 Hz, 2H, C*H*₂), 2.39 (s, 6H, xylyl-C*H*₃), 1.38 (t, ³*J*_{HH} = 7.1 Hz 3H, CH₂C*H*₃) ppm. ¹³C{¹H} NMR (75 MHz, CD₃CN, 298K) δ = 162.57 (CO), 145.72 (C_{prz}), 140.69 (C_{xyl}-Me), 140.63 (C_{phe}), 130.01(CH_{xyl}), 129.56 (CH_{prz}), 118.15 (CH_{xyl}), 110.81 (CH_{prz}), 61.67 (CH₂), 21.35 (xylyl-CH₃), 14.62 (CH₂CH₃) ppm. HR-MS (m/z): calculated for C₁₄H₁₇N₂O₂ [M+H]⁺ = 245.1290; found: 245.1280.

Figure S4: ¹H NMR spectrum (CD₃CN, 298 K, 300 MHz) of prec-f.

Figure S5: ¹³C{¹H} NMR spectrum (CD₃CN, 298 K, 75 MHz) of prec-f.

Synthesis of prec-g

Ethyl 1H-pyrazole-3-carboxylate (1.5 g, 10.7 mmol) and Cs₂CO₃ (6.9 g, 21.4 mmol) were dissolved in dry MeCN (40 mL) under constant N₂ flow. 2-iodopropane (1.1 mL, 10.7 mmol) was added and the mixture stirred at rt for 16 h. The reaction mixture was then concentrated under vacuo followed by gradient FCC (SiO₂; EtOAc:pentane, 0 to 30%; 2nd fraction) to yield **prec-g** as a colorless oil (0.80 g, 41%). Note: **prec-g** is also commercially available. The ¹H NMR data (Figure S6) match those of commercial samples and purity is sufficient for further reactions.^{S4 1}H NMR (300 MHz, CD₃CN, 298K) $\delta = 7.63$ (d, ³*J*_{HH} = 2.4 Hz, 1H, C*H*_{prz}), 6.74 (d, ³*J*_{HH} = 2.4 Hz, 1H, C*H*_{prz}), 4.59 (hept, ³*J*_{HH} = 6.7 Hz, 1H, *i*Pr-C*H*), 4.31 (q, ³*J*_{HH} = 7.1 Hz, 2H, C*H*₂), 1.49 (d, ³*J*_{HH} = 6.7 Hz, 6H, *i*Pr-C*H*₃), 1.34 (t, ³*J*_{HH} = 7.1 Hz 3H, CH₂C*H*₃) ppm.

Figure S6: ¹H NMR spectrum (CD₃CN, 298 K, 300 MHz) of prec-g.

S.1.3 Synthesis of carboxylic acids 1c–1g

Synthesis of 1c

Prec-c (1.5 g, 6.9 mmol) and lithium hydroxide monohydrate (0.58 g, 13.8 mmol) were stirred for 1 h at 23 °C in a mixture of MeOH (10 mL) and H₂O (5 mL). At full conversion (TLC monitoring), HCl_{aq} (1.0 M, 15 mL) was added slowly and the resulting mixture was stirred for 20 min. The reaction mixture was then extracted with CH₂Cl₂ (3 x 30 mL), the organic fractions were combined, dried over MgSO₄, filtered, and concentrated to dryness to yield **1c** as a off-white solid (1.1 g, 84%). Spectroscopical data are in agreement with literature values.^{S5} ¹H NMR (300 MHz, DMSO-*d*₆, 298K) δ = 13.30 (s, 1H, COO*H*), 9.39 (s, 1H, C*H*_{trz}), 7.98 (dd, *J*_{HH} =7.7, 1.7 Hz, 2H, C*H*_{Ph}), 7.68 – 7.47 (m, 3H, C*H*_{Ph}) ppm.

Figure S7: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 300 MHz) of 1c.

Synthesis of 1e

Prec-e (3.33 g, 15.4 mmol) and lithium hydroxide monohydrate (1.29 g, 30.8 mmol were stirred for 1 h at 23 °C in a mixture of MeOH (10 mL) and H₂O (5 mL). At full conversion (TLC monitoring), HCl_{aq} (1.0 M, 35 mL) was added slowly and the resulting mixture was stirred for 20 min. The reaction mixture was then extracted with CH₂Cl₂ (3 x 30 mL), the organic fractions were combined, dried over MgSO₄, filtered, and concentrated to dryness to yield **1e** as an off-white solid (2.68 g, 92%). ¹H NMR (300 MHz, DMSO-*d*₆, 298K) δ = 12.97 (s, 1H, COO*H*), 8.61 (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), 7.95 – 7.84 (m, 2H, C*H*_{phe}), 7.62 – 7.49 (m, 2H, C*H*_{phe}), 7.46 – 7.34 (m, 1H, C*H*_{phe}), 6.96 (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), ppm. ¹³C {¹H} NMR (75 MHz, DMSO-*d*₆, 298K) δ = 163.05 (CO), 145.28 (*C*_{prz}), 139.33 (*C*_{phe}), 129.76 (*C*H_{phe}), 129.71 (*C*H_{prz}), 127.44 (*C*H_{phe}), 119.20 (*C*H_{phe}), 110.32 (*C*H_{prz}). HR-MS (m/z): calculated for C₁₀H₉N₂O₂ [M+H]⁺ = 189.0664; found: 189.0654.

Figure S8: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 300 MHz) of 1e.

Figure S9: ¹³C{¹H} NMR spectrum (DMSO-*d*₆, 298 K, 75 MHz) of 1e.

Synthesis of 1f

Prec-f (2.80 g, 11.5 mmol) and lithium hydroxide monohydrate (0.96 g, 23.0 mmol were stirred for 1h at 23 °C in a mixture of MeOH (20 mL) and H₂O (10 mL). At full conversion (TLC monitoring), HCl_{aq} (1.0 M, 25 mL) was added slowly and the resulting mixture was stirred for 20 more min. The reaction mixture was then extracted in CH₂Cl₂ (3 x 30 mL), the organic fractions were combined, dried over MgSO₄, filtered, and concentrated to dryness to yield **1f** as a white solid (2.43 g, 98%). ¹H NMR (300 MHz, DMSO-*d*₆, 298K) δ = 12.94 (s, 1H, COO*H*), 8.53 (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), 7.51 (s, 2H, C*H*_{xyl}), 7.01 (s, 1H, C*H*_{xyl}), 6.92 (d, ³*J*_{HH} = 2.6 Hz, 1H, C*H*_{prz}), 139.23 (*C*_{xylyl}), 139.07 (*C*_{xyl}-Me), 129.49 (*C*H_{phe}), 128.69 (*C*H_{prz}), 116.78 (*C*H_{xyl}), 110.07 (*C*H_{prz}), 20.92 (xylyl-CH₃) ppm. HR-MS (m/z): calculated for C₁₂H₁₃N₂O₂ [M+H]⁺ = 217.0977; found: 217.0968.

Figure S10: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 300 MHz) of 1f.

Figure S11: ¹³C{¹H} NMR spectrum (DMSO-*d*₆, 298 K, 75 MHz) of 1f.

Synthesis of carboxylic acid 1g

Prec-g (500 mg, 2.75 mmol) was dissolved in a mixture of MeOH/H₂O (2:1 v/v, 5 mL) and lithium hydroxide monohydrate (230 mg, 5.00 mmol) was added. After stirring the mixture for 3 h at rt, it was extracted with CH₂Cl₂ (3 x 20 mL). The organic fractions were combined, dried over MgSO₄, filtered, and dried under vacuo to yield **1g** as a colorless solid (405 mg, 95%). The carboxylic acid **1g** was used for the next step without any further purification. NMR data in agreement with those in the literature.^{S6} ¹H NMR (300 MHz, DMSO-*d*₆, 298K) δ = 7.85 (d, ³*J*_{HH} = 2.4 Hz, 1H, *CH*_{prz}), 6.66 (d, ³*J*_{HH} = 2.3 Hz, 1H, *CH*_{prz}), 4.56 (hept, ³*J*_{HH} = 6.7 Hz, 1H, *i*Pr-C*H*), 1.49 (d, ³*J*_{HH} = 6.7 Hz, 6H, *i*Pr-C*H*₃) ppm.

Figure S12: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 300 MHz) of 1g.

S.1.4 Synthesis of pyridine carboxamides 2a–2f

Scheme S1: General procedure for the preparation of pyridine carboxamides 2a-f.

General procedure I: To a solution of the carboxylic acid (10 mmol, 1 eq.), benzotriazol-1yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP; 6.24 g, 12.5 mmol, 1.2 eq.) and the appropriate aminopyridine (10 to 11 mmol, 1 to 1.1 eq.) in dry THF (20 mL) was added Et₃N (4.18 mL, 30 mmol, 3 eq.). The resulting mixture was stirred under the conditions (temperature, time) as specified. After cooling to room temperature, H₂O (40 mL) was added and the mixture was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated under vacuo. The resulting brownish residue was purified by flash column chromatography (SiO₂) to yield **2**.

Synthesis of pyridine carboxamide 2a

2a was prepared based on the previously reported procedure^{S7} from picolinic acid (2.0 g, 16.3 mmol) and 3-methylpyridin-2-amine (1.65 mL, 16.3 mmol) at 50°C for 16 h. The resulting waxy solid was purified by gradient FCC (0 to 100% EtOAc in nhexane) to yield compound **2a** as an off-white solid (2.77 g, 80%). Analytical data are in accordance with literature.^{S7 1}H NMR (300 MHz, DMSO- d_6 , 298K) δ = 10.53 (s, 1H, NH), 8.74 (ddd, J_{HH} = 4.8, 1.7, 1.0 Hz, 1H, CH_{py} , 8.31 (dd, J_{HH} = 5.0, 1.8 Hz, 1H, CH_{pyr}), 8.14 (d, ³ J_{HH} = 7.7 Hz, 1H, CH_{py} , 8.07 (td, J_{HH} = 7.6, 1.7 Hz, 1H, CH_{py}), 7.74 (dd, J_{HH} = 7.6, 1.8 Hz, 1H, CH_{pyr}), 7.69 (ddd, J_{HH} = 7.4, 4.8, 1.4 Hz, 1H, CH_{py} , 7.26 (dd, ³ J_{HH} = 7.5, 4.8 Hz, 1H, CH_{pyr}), 2.25 (s, 3H, CH₃) ppm.

Figure S13: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 300 MHz) of 2a.

Synthesis of pyridine carboxamide 2b

2b was prepared according to the general procedure I from oxazol-4-carboxylic acid (1.13 g, 10 mmol) and 2-amino-3-methylpyridine (1.01 mL, 10 mmol) at 60 °C for 30 h. The residue was purified by gradient FCC (0 to 100% EtOAc in pentane; rf 0.5 in EtOAc) to yield **2b** as an off-white solid (1.36 g, 67%). ¹H NMR (400 MHz, DMSO-*d*₆, 298K) $\delta =$ 10.20 (s, 1H, N*H*), 8.81 (d, ⁴*J*_{*HH*} = 1.0 Hz, 1H, *CH*_{oxa}), 8.60 (d, ⁴*J*_{*HH*} = 1.0 Hz, 1H, *CH*_{oxa}), 8.31 (dd, *J*_{*HH*} = 4.8, 1.8 Hz, 1H, *CH*_{pyr}), 7.73 (dd, *J*_{*HH*} = 7.5, 1.8 Hz, 1H, *CH*_{pyr}), 7.27 (dd, *J*_{*HH*} = 7.5, 4.8 Hz, 1H, *CH*_{pyr}), 2.22 (s, 3H, *CH*₃) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆, 298K) δ = 159.13 (CO), 152.90 (*C*H_{oxa}), 149.74 (*C*_{pyr}), 146.48 (*C*H_{pyr}), 143.32 (*C*H_{oxa}), 139.78 (*C*H_{pyr}), 135.67(*C*_{oxa}), 130.16 (*C*_{pyr}–Me), 122.84 (*C*H_{pyr}), 17.92 (pyr-CH₃) ppm. HR-MS (m/z): calculated for C₁₀H₁₀N₃O₂ [M+H]⁺ = 204.0768; found: 204.0759.

Figure S14: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 400 MHz) of **2b**.

Figure S15: ${}^{13}C{}^{1}H$ NMR spectrum (DMSO-*d*₆, 298 K, 101 MHz) of **2b**.

Synthesis of pyridine carboxamide 2c

2c was prepared according to the general procedure I from 1-phenyl-1H-1,2,3-triazole-4-carboxylic acid (1.10 g, 5.81 mmol) and 2-amino-3-methylpyridine (650 μ L, 6.40 mmol) at 23 °C for 18 h. The residue was purified by gradient

FCC (50 to 100% EtOAc in pentane, rf 0.2 in pentane/EtOAc 1:1) to yield **2c** as a white solid (1.25 g, 77%). ¹H NMR (400 MHz, DMSO-*d*₆, 298K) $\delta = 10.58$ (s, 1H, N*H*), 9.45 (s, 1H, C*H*_{trz}), 8.34 (d, ³*J*_{HH} = 4.8 Hz, 1H, C*H*_{pyr}), 8.01 (d, ³*J*_{HH} = 7.8 Hz, 2H, C*H*_{phe}), 7.75 (d, ³*J*_{HH} = 7.6 Hz, 1H, C*H*_{pyr}), 7.65 (t, ³*J*_{HH} = 7.8 Hz, 2H, C*H*_{phe}), 7.29 (dd, ³*J*_{HH} = 7.6, 4.8 Hz, 1H, C*H*_{pyr}), 2.27 (s, 3H, C*H*₃) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆, 298K) $\delta = 158.73$ (CO), 149.88 (*C*_{pyr}), 146.54 (CH_{pyr}), 143.69 (*C*_{trz}), 139.80 (CH_{pyr}), 136.77 (*C*_{phe}), 130.44 (CH_{phe}), 130.25 (*C*_{pyr}-Me), 129.73(CH_{phe}), 126.03 (CH_{trz}), 122.87 (CH_{pyr}), 121.05 (CH_{phe}), 17.98 (CH₃) ppm. HR-MS (m/z): calcd. for C₁₅H₁₄N₅O [M+H]⁺ = 280.1193; found: 280.1182.

Figure S16: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 400 MHz) of 2c

Figure S17: ¹³C{¹H} NMR spectrum (DMSO-*d*₆, 298 K, 101 MHz) of 2c

Synthesis of pyridine carboxamide 2d

2d was prepared according to the general procedure I from 1-methyl-1H-pyrazole-3carboxylic acid (950 mg, 10 mmol) and 2-amino-3-methylpyridine (1 mL, 10 mmol) at 60 °C for 30 h. The resulting waxy solid was purified by gradient FCC (0 to 8% MeOH in EtOAc; 3rd fraction) to yield compound **2d** as a pale-yellow waxy solid (1.59 g, 62%). ¹H NMR (400 MHz, DMSO-*d*₆, 298 K): $\delta = 9.91$ (s, 1H, N*H*), 8.29 (dd, *J*_{*HH*} = 4.8, 1.8 Hz, 1H, *CH*_{pyr}, 7.85 (d, ³*J*_{*HH*} = 2.3 Hz, 1H, *CH*), 7.71 (dd, *J*_{*HH*} = 7.5, 1.8 Hz, 1H, *CH*_{pyr}), 7.24 (dd, ³*J*_{*HH*} = 7.5, 4.8 Hz, 1H, *CH*_{pyr}), 6.78 (d, ³*J*_{*HH*} = 2.3 Hz, 1H, *CH*_{prz}), 3.96 (s, 3H, NC*H*₃), 2.21 (s, 3H, pyr-*CH*₃) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆, 298K) $\delta = 159.85$ (CO), 149.77 (*C*_{pyr}), 145.86 (*C*H_{pyr}), 145.62 (*C*_{prz}), 139.11 (*C*H_{pyr}), 132.79 (*C*H_{prz}), 129.50 (*C*_{pyr}-Me), 121.97 (*C*H_{pyr}), 106.55 (*C*H_{prz}), 39.02 (N-*C*H₃), 17.56 (pyr-*C*H₃) ppm. HR-MS (m/z): calculated for C₁₁H₁₃N₄O [M+H]⁺ = 217.1084; found: 217.1078.

Figure S18: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 400 MHz) of 2d

Figure S19: ${}^{13}C{}^{1}H$ NMR spectrum (DMSO- d_6 , 298 K, 101 MHz) of 2d

Synthesis of pyridine carboxamide 2e

2e was prepared according to the general procedure I from **1e** (1.50 g, 8.0 mmol) and 2-amino-3-methylpyridine (890 μ L, 8.8 mmol) at 45 °C for 30 h. The residue was purified by FCC (0 to 100% EtOAc in pentane) to yield **2e** as a yellow solid (1.69 g, 76%). ¹H NMR (400 MHz, DMSO-*d*₆, 298K) δ = 10.29 (s, 1H, N*H*), 8.67

(d, ${}^{3}J_{HH} = 2.6$ Hz, 1H, CH_{prz}), 8.34 (dd, $J_{HH} = 4.8$, 1.9 Hz, 1H, CH_{pyr}), 8.08 – 7.97 (m, 2H, CH_{phe}), 7.75 (dd, $J_{HH} = 7.5$, 1.9 Hz, 1H, CH_{pyr}), 7.63 – 7.49 (m, 2H, CH_{phe}), 7.46 – 7.35 (m, 1H, CH_{phe}), 7.28 (dd, ${}^{3}J_{HH} = 7.5$, 4.8 Hz, 1H, CH_{pyr}), 7.06 (d, ${}^{3}J_{HH} = 2.6$ Hz, 1H, CH_{prz}), 2.25 (s, 3H, pyridine- CH_{3}) ppm. ${}^{13}C{}^{1}H$ NMR (101 MHz, DMSO- d_{6} , 298K) $\delta = 159.65$ (CO), 149.65(C_{pyr}), 147.21 (C_{prz}), 145.94 (CH_{pyr}), 139.26 (CH_{pyr}), 139.23 (C_{phe}), 129.74 (CH_{prz}), 129.67 (C_{pyr} -Me), 129.55 (CH_{phe}) 127.16 (CH_{phe}), 122.16 (CH_{pyr}), 119.00 (CH_{phe}), 108.45 (CH_{prz}), 17.61 (CH_{3}) ppm. HR-MS (m/z): calculated for $C_{16}H_{15}N_4O$ [M+H]⁺ = 279.1241; found: 279.1228.

Figure S20: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 400 MHz) of 2e

Figure S21: ¹³C{¹H} NMR spectrum (DMSO-d₆, 298 K, 101 MHz) of 2e

Synthesis of pyridine carboxamide 2f

2f was prepared according to the general procedure I from **1f** (2.00 g, 9.25 mmol) and 2-amino-3-methylpyridine (1.00 mL, 9,88 mmol) at 45 °C for 18 h. The residue was purified by gradient FCC (20 to 50% EtOAc in pentane, rf 0.7 in EtOAc/pentane 1:1) to yield **2f** as a whitish solid (1.90 g, 67%). ¹H NMR (400 MHz, DMSO- d_{6} , 298K) $\delta = 10.28$ (s, 1H, N*H*), 8.60 (d, ³ $J_{HH} = 2.6$ Hz, 1H,

 CH_{prz}), 8.33 (dd, J_{HH} = 4.8, 1.8 Hz, 1H, CH_{pyr}), 7.75 (dd, J_{HH} = 7.5, 1.8, 1H, CH_{pyr}), 7.66 (s, 2H, CH_{phe}), 7.28 (dd, ${}^{3}J_{HH}$ = 7.5, 4.8 Hz, 1H, CH_{pyr}), 7.04 (m, 1H, CH_{phe}), 7.02 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, CH_{prz}), 2.37 (s, 6H, phe- CH_{3}), 2.25 (s, 3H, pyr- CH_{3}) ppm. ${}^{13}C{}^{1}H$ } NMR (101 MHz, DMSO- d_{6} , 298K) δ = 159.69 (CO), 149.67 (C_{pyr}), 146.94 (C_{prz}), 145.90 (CH_{pyr}), 139.24 (CH_{pyr}), 139.16 (C_{phe}), 138.90 (C_{phe} -Me) 129.71 (C_{pyr} -Me), 129.56 (CH_{prz}), 128.47(CH_{phe}), 122.14 (CH_{pyr}), 116.66 (CH_{phe}), 108.24 (CH_{prz}), 20.89 (phe- CH_{3}), 17.62(pyr- CH_{3}) ppm. HR-MS (m/z): calculated for $C_{18}H_{19}N_4O$ [M+H]⁺ = 307.1554; found: 307.1541.

Figure S22: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 400 MHz) of 2f

Figure S23: ${}^{13}C{}^{1}H$ NMR spectrum (DMSO- d_6 , 298 K, 101 MHz) of 2f

S.1.5 Synthesis of pyridinium iodide salts 3a–3g

Scheme S2: General procedure for the preparation pyridinium iodide salts 3a-g.

General procedure II: To a solution of the pyridine carboxamide **2** (5.0 mmol, 1 eq.) in MeCN (15 mL) was added MeI (620 μ L, 10.0 mmol, 2 eq.). The resulting mixture was stirred under the conditions (temperature, time) specified, then concentrated to 5 mL, and the product was precipitated by addition of Et₂O. The precipitate was collected by filtration, washed with cold Et₂O, and dried in vacuo to give the title product **3**.

Synthesis of 3a

3a has been reported previously.^{S7} According to the general procedure II from **2a** (2.0 g, 9.4 mmol) and MeI (1.2 mL, 18.8 mmol) at 60 °C for 16 h, salt **3a** was obtained as a yellow solid (3.1 g, 93%). Analytical data are in agreement with

literature values.^{S7 1}H NMR (300 MHz, CD₃CN, 298K) $\delta = 10.43$ (s, 1H, N*H*), 8.79 – 8.71 (m, 1H, C*H*_{py}), 8.59 (d, ${}^{3}J_{HH} = 6.1$ Hz, 1H, C*H*_{pyr}), 8.44 (d, ${}^{3}J_{HH} = 7.9$ Hz, 1H, C*H*_{pyr}), 8.26 – 8.17 (m, 1H, C*H*_{py}), 8.08 (td, $J_{HH} = 7.9$, 1.7 Hz, 1H, C*H*_{py}), 7.86 (dd, ${}^{3}J_{HH} = 8.0$, 6.2 Hz, 1H, C*H*_{pyr}), 7.72 (ddd, $J_{HH} = 7.6$, 4.8, 1.3 Hz, 1H, C*H*_{py}), 4.22 (s, 3H NC*H*₃), 2.46 (s, 3H, pyrC*H*₃) ppm.

Figure S24: ¹H NMR spectrum (CD₃CN, 298 K, 300 MHz) of 3a

Synthesis of 3b

According to the general procedure II from **2b** (1.02 g, 5.0 mmol) at 70°C for 16 h, salt **3b** was obtained as a yellow solid (1.35 g, 78%). ¹H NMR (400 MHz, CD₃CN, 298K) $\delta = 9.66$ (s, 1H, NH), 8.66 (d, ³*J*_{HH} = 6.2 Hz, 1H, CH_{pyr}), 8.64 (d, ⁴*J*_{HH} = 1.0 Hz, 1H, CH_{oxa}), 8.46 (d, ³*J*_{HH} = 8.0 Hz, 1H, CH_{pyr}), 8.25 (d, ⁴*J*_{HH} = 1.0 Hz, 1H, CH_{oxa}), 7.88 (dd, ³*J*_{HH} = 8.0, 6.2 Hz, 1H, CH_{pyr}), 4.24 (s, 3H NCH₃), 2.46 (s, 3H, pyrCH₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₃CN, 298K) $\delta = 159.94$ (CO), 153.22 (CH_{oxa}), 149.40 (CH_{pyr}), 146.55 (C_{pyr}) 145.48 (CH_{pyr}), 145.01 (CH_{oxa}), 139.55 (C_{pyr}-Me), 134.89 (C_{oxa}), 126.74 (CH_{pyr}), 46.53 (NCH₃), 18.29 (pyrCH₃) ppm. HR-MS (m/z): calculated for C₁₁H₁₂N₃O₂ [M-I]⁺ = 218.0925 ; found: 218.0929.

Figure S25: ¹H NMR spectrum (CD₃CN, 298 K, 400 MHz) of 3b

Figure S26: ¹³C{¹H} NMR spectrum (CD₃CN, 298 K, 101 MHz) of **3b**

Synthesis of 3c

According to the general procedure II from **2c** (1.12 g, 4.0 mmol) at 60 °C for 30 h, salt **3c** was obtained as an off-white solid (1.01 g, 60%). ¹H NMR (300 MHz, CD₃CN, 298K) $\delta = 9.95$ (s, 1H, NH), 9.08 (s, 1H, CH_{trz}) 8.67 (d, ³J_{HH} = 6.3 Hz, 1H, CH_{pyr}), 8.49 (d, ³J_{HH} = 8.0 Hz, 1H, CH_{pyr}), 7.96 - 7.85 (m, 3H, CH_{phenyl} + 1 CH_{pyr}) 7.77 - 7.52 (m, 3H, CH_{phe}), 4.30 (s, 3H, NCH₃), 2.51 (s, 3H, pyrCH₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) $\delta = 159.41$ (CO), 149.61 (CH_{pyr}), 146.27 (C_{pyr}) 145.66 (CH_{pyr}), 142.22 (C_{trz}), 139.73 (C_{pyr}-Me), 137.44 (C_{phe}), 131.00 (CH_{phe}), 130.78 (CH_{phe}), 127.30 (CH_{trz}), 126.98 (CH_{pyr}), 122.07 (CH_{phe}), 46.65 (NCH₃), 18.34 (pyrCH₃) ppm. HR-MS (m/z): calculated for C₁₆H₁₆N₅O [M-I]⁺ = 294.1350 ; found: 294.1347.

Figure S27: ¹H NMR spectrum (CD₃CN, 298 K, 300 MHz) of 3c

Figure S28: ${}^{13}C{}^{1}H$ NMR spectrum (CD₃CN, 298 K, 101 MHz) of 3c

Synthesis of 3d

According to the general procedure II from **2d** (1.08 g, 5.0 mmol) at 60 °C for 16 h, salt **3d** was obtained as a yellow solid (1.25 g, 70%). ¹H NMR (300 MHz, CD₃CN, 298K) $\delta = 9.74$ (s, 1H, NH), 8.78 (dd, $J_{HH} = 6.2$, 1.6 Hz, 1H, CH_{pyr}), 8.47 (dd, $J_{HH} = 8.0$, 1.6 Hz, 1H, CH_{pyr}) 7.89 (dd, ${}^{3}J_{HH} = 8.0$, 6.2 Hz, 1H, CH_{pyr}), 7.71 (d, ${}^{3}J_{HH} = 2.4$ Hz, 1H, CH_{prz}), 6.91 (d, ${}^{3}J_{HH} = 2.4$ Hz, 1H, CH_{prz}), 4.26 (s, 3H, pyr-NCH₃), 3.97 (s, 3H, prz-NCH₃), 2.44 (s, 3H, pyr-CH₃) ppm. ¹³C {¹H} NMR (75 MHz, CD₃CN, 298K) $\delta = 160.98$ (CO), 148.99 (CH_{pyr}), 146.91 (C_{pyr}), 145.13 (CH_{pyr}), 144.34 (C_{prz}), 139.43 (C_{pyr}-Me), 134.21 (CH_{prz}), 126.48 (CH_{pyr}), 108.25 (CH_{prz}), 46.51 (pyr-NCH₃), 40.20 (prz-NCH₃), 18.25 (pyr-CH₃) ppm. HR-MS (m/z): calculated for C₁₂H₁₅N₄O [M-I]⁺ = 231.1241 ; found: 231.1240.

Figure S29: ¹H NMR spectrum (CD₃CN, 298 K, 300 MHz) of 3d

Figure S30: ¹³C{¹H} NMR spectrum (CD₃CN, 298 K, 75 MHz) of 3d

Synthesis of 3e

According to the general procedure II from **2e** (1.11 g, 4.0 mmol) and MeI (275 μ L, 4.4 mmol) at 60 °C for 16 h, salt **3e** was obtained as a pale yellow solid (1.29 g, 77%). ¹H NMR (400 MHz, CD₃CN, 298K) δ = 9.93 (s, 1H, NH), 8.66 (d, ³J_{HH} = 6.2 Hz, 1H, CH_{pyr}), 8.46 (d, ³J_{HH} = 8.0 Hz, 1H, CH_{pyr}), 8.34 (d, ³J_{HH} = 2.6 Hz, 1H, CH_{prz}), 7.97 (d, ³J_{HH} = 8.1 Hz, 2H, CH_{phe}), 7.88 (dd, ³J_{HH} = 8.0, 6.2 Hz, 1H, CH_{pyr}), 7.58 (t, ³J_{HH} = 8.1 Hz, 2H, CH_{phe}), 7.45 (t, ³J_{HH} = 8.1 Hz, 1H, CH_{phe}), 7.11 (d, ³J_{HH} = 2.6 Hz, 1H, CH_{prz}), 4.28 (s, 3H, NCH₃), 2.50 (s, 3H, pyr-CH₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₃CN, 298K) δ = 161.02 (CO), 149.40 (CH_{pyr}), 146.85 (C_{pyr}), 146.22 (C_{prz}), 145.43 (CH_{pyr}), 140.33 (C_{phe}), 139.59 (C_{pyr}-Me), 131.27 (CH_{prz}), 130.73 (CH_{phe}) 128.86 (CH_{phe}) 126.69 (CH_{pyr}), 120.50 (CH_{phe}) 109.85 (CH_{prz}), 46.62 (pyr-NCH₃), 18.35 (pyr-CH₃) ppm. HR-MS (m/z): calculated for C₁₇H₁₇N₄O [M-I]⁺ = 293.1397 ; found: 293.1395

Figure S31: ¹H NMR spectrum (CD₃CN, 298 K, 400 MHz) of 3e

Figure S32: ¹³C{¹H} NMR spectrum (CD₃CN, 298 K, 101 MHz) of 3e

Synthesis of 3f

According to the general procedure II from **2f** (1.68 g, 5.5 mmol) and MeI (380 µL, 6.1 mmol) at 60 °C for 16 h, salt **3f** was obtained as an off-white solid (1.87 g, 76%). ¹H NMR (300 MHz, CD₃CN, 298K) δ = 10.07 (s, 1H, N*H*), 8.68 (d, ³*J*_{*HH*} = 6.2 Hz, 1H, *CH*_{pyr}), 8.46 (d, ³*J*_{*HH*} = 8.0 Hz, 1H, *CH*_{pyr}), 8.29 (d, ³*J*_{*HH*} = 2.6 Hz, 1H, *CH*_{prz}), 7.88 (dd, ³*J*_{*HH*} = 8.0, 6.2 Hz, 1H, *CH*_{pyr}), 7.64 (s,

2H, CH_{phe}), 7.08 (s, 1H, CH_{phe}) 7.08 (d, ${}^{3}J_{HH}$ = 2.6 Hz, 1H, CH_{prz}), 4.30 (s, 3H, NCH₃), 2.50 (s, 3H, pyr-CH₃), 2.40 (s, 6H, phe-CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (75 MHz, CD₃CN, 298K) δ = 161.04 (CO), 149.28 (CH_{pyr}), 146.94 (C_{pyr}), 145.34 (CH_{pyr}), 145.84 (C_{prz}), 140.72 (C_{phe}-Me), 140.16 (C_{phe}), 139.66 (C_{pyr}-Me), 130.99 (CH_{prz}), 130.18 (CH_{phe}) 126.65 (CH_{pyr}), 118.08 (CH_{phe}) 109.61 (CH_{prz}), 46.72 (pyr-NCH₃), 21.37 (phe-CH₃), 18.41 (pyr-CH₃) ppm. HR-MS (m/z): calculated for C₁₉H₂₁N₄O [M-I]⁺ = 321.1710 ; found: 321.1702.

Figure S33: ¹H NMR spectrum (CD₃CN, 298 K, 300 MHz) of 3f

Figure S34: ¹³C{¹H} NMR spectrum (CD₃CN, 298 K, 75 MHz) of 3f

Scheme S3: Synthesis of iodide salt 3g.

The carboxylic acid **1g** (838 mg, 5.4 mmol), 2-amino-3-methylpyridine (660 µL, 6.54 mmol) and PyBOP (3.40 g, 6.5 mmol) were dissolved in dry THF (20 mL) in a N₂ atmosphere. NEt₃ (2.3 mL, 16 mmol) was added, and the reaction mixture was heated to 60 °C for 30 h. H₂O (40 mL) was added and the mixture was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated under vacuo. The brownish residue was purified by gradient FCC (SiO₂; 0 to 100% EtOAc in pentane; 2nd fraction) and was directly used for the next step without any further purification. The crude carboxamide **2g** was thus dissolved in dry MeCN (10 mL) and MeI (0.66 mL, 10.8 mmol) was added. The mixture was stirred at 60 °C for 8 h and then concentrated to 2 mL. Upon addition of Et₂O (8 mL), a yellowish precipitate formed, which was filtered off, washed with cold Et₂O and thoroughly dried under vacuum to yield **3g** as a yellow powder (1.17 g, 56%). ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 8.73$ (d, ³*J*_{HH} = 5.5 Hz, 1H, C*H*_{PYA}), 8.33 (d, ³*J*_{HH} = 7.9 Hz, 1H,

 CH_{PYA}), 7.85 – 7.81 (m, 1H, CH_{PYA}), 7.58 (d, ${}^{3}J_{HH} = 2.4$ Hz, 1H, CH_{prz}), 7.02 (d, ${}^{3}J_{HH} = 2.4$ Hz, 1H, CH_{prz}), 4.62 (sept, 1H, N_{prz} -CH), 4.45 (s, 3H, N_{PYA} -CH₃), 2.57 (s, 3H, C-CH₃), 1.59 (s, 3H, N_{prz} -C-CH₃), 1.57 (s, 3H, N_{prz} -C-CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (101 MHz, $CD_{2}Cl_{2}$, 298K) $\delta = 160.77$ (CO), 147.99 (C_{prz}), 147.73 (C_{PYA}), 143.59 (CH_{PYA}), 143.34 (CH_{PYA}), 140.17 (C_{PYA} -Me), 129.54 (CH_{prz}), 125.72 (CH_{PYA}), 107.79 (CH_{prz}), 55.59 (N_{prz} CH), 47.30 (N_{PYA} CH₃), 23.05 (N_{prz} -C-CH₃), 18.99 (C-CH₃) ppm. HR-MS (m/z) calculated for C₁₄H₁₉N₄O [M-I]⁺ = 259.1553; found: 259.1556. Elemental Analysis calculated for C₁₄H₁₉IN₄O: C 43.54, H 4.96, N 14.51 found: C 43.86, H 5.0, N 14.17.

Figure S35: ¹H NMR spectrum (CD₂Cl₂, 298 K, 400 MHz) of 3g

Figure S36: ¹³C{¹H} NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 3g

S.1.6 Synthesis of pyridinium amidate (PYA) 4a-4g

Scheme S4: General method for the preparation of neutral PYA 4a-g.

General procedure III: The pyridinium salt **3** (2 mmol) was dissolved in KOH_{aq} (2 M, 10 mL, 20 mmol) and the resulting solution was briefly sonicated and stirred at 23 °C for 10 min. The resulting slurry was extracted with CH_2Cl_2 (5 x 15 mL), the combined organic fractions were dried over MgSO₄, filtered, and evaporated to dryness to yield the pure pyridinium amidate (PYA) **4**.

Synthesis of PYA 4a

Following the general procedure III, reaction of **3a** (312 mg, 880 μ mol) with KOH yielded compound **4a** as a yellow solid (176 mg, 88%). Spectroscopic data are in agreement with literature values.^{S1} ¹H NMR (300 MHz, CD₂Cl₂, 298 K): δ = 8.61 (d,

 ${}^{3}J_{HH} = 4.6$ Hz, 1H, CH_{pyr}), 8.18 (d, ${}^{3}J_{HH} = 7.4$ Hz, 1H, CH_{pyr}), 7.76 (t, ${}^{3}J_{HH} = 7.4$ Hz, 1H, CH_{pyr}), 7.66 (d, ${}^{3}J_{HH} = 6.6$ Hz, 1H, CH_{PYA}), 7.57 (d, ${}^{3}J_{HH} = 7.2$ Hz, 1H, CH_{PYA}), 7.31 (dd, ${}^{3}J_{HH} = 7.4$, 4.6 Hz, 1H, CH_{pyr}), 6.73 (dd, ${}^{3}J_{HH} = 7.2$, 6.7 Hz, 1H, CH_{PYA}), 3.86 (s, 3H, PYA-NCH₃), 2.20 (s, 3H, PYA-CCH₃) ppm.

Figure S37: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of 4a

Synthesis of PYA 4b

Following the general procedure III and starting from **3b** (690 mg, 2.0 mmol) yielded compound **4b** as a pale-yellow solid (343 mg, 79%). ¹H NMR (300 MHz, CD₂Cl₂, 298K) $\delta = 8.15$ (d, ⁴*J*_{HH} = 1.1 Hz, 1H, C*H*_{oxa}), 7.85 (d, ⁴*J*_{HH} = 1.1 Hz, 1H, C*H*_{oxa}), 7.64 (d, ³*J*_{HH} = 6.6 Hz, 1H, C*H*_{PYA}), 7.58 (d, ³*J*_{HH} = 7.2 Hz, 1H, C*H*_{PYA}), 6.74 (dd, ³*J*_{HH} = 7.2 Hz, 6.6 Hz, 1H, C*H*_{PYA}), 3.85 (s, 3H, NC*H*₃), 2.22 (s, 3H, pyrC*H*₃) ppm. ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 298K) $\delta = 162.04$ (CO), 160.70 (*C*_{PYA}), 151.04 (*C*H_{oxa}), 141.79 (*C*H_{oxa}), 141.10 (*C*_{oxa}), 140.98 (*C*H_{PYA}), 137.98 (*C*H_{PYA}), 132.91 (*C*_{pyr}–Me), 113.72 (*C*H_{PYA}), 43.10 (NCH₃), 19.63 (pyrCH₃) ppm. HR-MS (m/z): calculated for C₁₁H₁₂N₃O₂ [M+H]⁺ = 218.0925 ; found: 218.0914.

Figure S38: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of 4b

Figure S39: ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K, 75 MHz) of 4b

Synthesis of PYA 4c

Following the general procedure III and starting from **3c** (420 mg, 1.0 mmol) yielded compound **4c** as a yellow solid (276 mg, 94%). ¹H NMR (300 MHz, CD₂Cl₂, 298K) $\delta = 8.47$ (s, 1H, CH_{trz}), 7.86 - 7.75 (m, 2H, CH_{phe}), 7.67 (d,

 ${}^{3}J_{HH} = 6.7$ Hz, 1H, CH_{PYA}), 7.62 (d, ${}^{3}J_{HH} = 7.2$ Hz, 1H, CH_{PYA}), 7.59 - 7.52 (m, 2H, CH_{phe}), 7.50 - 7.43 (m, 1H, CH_{phe}), 6.79 (dd, ${}^{3}J_{HH} = 7.2$ Hz, 6.7 Hz, 1H, CH_{PYA}), 3.92 (s, 3H, NCH₃), 2.27 (s, 3H, pyrCH₃) ppm. ${}^{13}C{}^{1}H$ NMR (75 MHz, CD₂Cl₂, 298K) $\delta = 161.25$ (CO), 160.71 (C_{PYA}), 149.10 (C_{trz}), 140.98 (CH_{PYA}), 137.91 (CH_{PYA}), 137.56 (C_{phe}) 132.85 (C_{pyr}-Me), 130.14 (CH_{phe}), 129.05 (CH_{phe}),124.05 (CH_{trz}), 120.85 (CH_{phe}), 113.82 (CH_{PYA}), 43.05 (NCH₃), 19.47 (pyrCH₃) ppm. HR-MS (m/z): calculated for C₁₆H₁₆N₅O [M+H]⁺ = 294.1355 ; found: 294.1336.

Figure S40: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of 4c

Figure S41: ¹³C{¹H} NMR spectrum (CD₂Cl₂, 298 K, 75 MHz) of 4c

Synthesis of PYA 4d

Following the general procedure III and starting from **3d** (500 mg, 1.4 mmol) yielded compound **4d** as a pale-yellow solid (285 mg, 88%). ¹H NMR (400 MHz, CD₂Cl₂, 298K) $\delta = 7.59$ (d, ³*J*_{HH} = 6.7 Hz, 1H, C*H*_{PYA}), 7.52 (d, ³*J*_{HH} = 7.2 Hz, 1H, C*H*_{PYA}, 7.35 (d, ³*J*_{HH} = 2.2 Hz, 1H, C*H*_{prz}), 6.69 (d, ³*J*_{HH} = 2.2 Hz, 1H, C*H*_{prz}), 6.66 (dd, ³*J*_{HH} = 7.2, 6.7 Hz, 2H, C*H*_{PYA}), 3.90 (s, 3H, prz-NC*H*₃), 3.82 (s, 3H, pyr-NC*H*₃), 2.19 (s, 3H, pyr-C*H*₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) $\delta = 163.90$ (CO), 160.20 (*C*_{PYA}), 151.79 (*C*_{prz}), 140.25 (*C*H_{PYA}), 137.69 (*C*H_{PYA}), 132.46 (*C*_{pyr}-Me), 130.67 (*C*H_{prz}), 112.65 (*C*H_{PYA}), 107.75 (*C*H_{prz}), 42.77 (pyr-NCH₃), 39.48 (prz-NCH₃), 19.60 (pyr-CH₃) ppm. HR-MS (m/z): calculated for C₁₂H₁₅N₄O [M+H]⁺ = 231.1246 ; found: 231.1238.

Figure S42: ¹H NMR spectrum (CD₂Cl₂, 298 K, 400 MHz) of 4d

Figure S43: ¹³C{¹H} NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 4d

Synthesis of PYA 4e

Following the general procedure III and starting from **3e** (800 mg, 1.9 mmol) yielded compound **4e** as a white solid (556 mg, 98%). ¹H NMR (300 MHz, CD₂Cl₂, 298K) δ = 7.95 (d, ³*J*_{HH} = 2.5 Hz, 1H, C*H*_{prz}), 7.75 (d, ³*J*_{HH} = 7.7 Hz, 2H, C*H*_{phe}), 7.63 (d, ³*J*_{HH} = 6.6 Hz, 1H, C*H*_{PYA}), 7.57 (d, ³*J*_{HH} = 7.2 Hz, 1H, C*H*_{PYA}),

7.46 (t, ${}^{3}J_{HH}$ = 7.7 Hz, 2H, CH_{phe}), 7.31 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 1H, CH_{phe}), 6.93 (d, ${}^{3}J_{HH}$ = 2.5 Hz, 1H, CH_{prz}), 6.72 (dd, ${}^{3}J_{HH}$ = 7.2 Hz, 6.6 Hz, 1H, CH_{PYA}), 3.88 (s, 3H, NCH₃), 2.25 (s, 3H, pyr-CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (101 MHz, CD₂Cl₂, 298K) δ = 163.23 (CO), 160.48 (C_{PYA}), 153.60 (C_{prz}), 140.71 (C_{phe}), 140.53 (CH_{PYA}), 137.79 (CH_{PYA}), 132.70 (C_{PYA}–Me), 129.73 (CH_{phe}), 127.56 (CH_{phe}), 126.82 (CH_{prz}), 119.61 (CH_{phe}), 113.15 (CH_{PYA}), 109.72 (CH_{prz}), 42.91 (pyr-NCH₃), 19.59 (pyr-CH₃) ppm. HR-MS (m/z): calculated for C₁₇H₁₇N4O [M+H]⁺ = 293.1402 ; found: 293.1394.

Figure S44: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of 4e

Figure S45: ¹³C{¹H} NMR spectrum (CD₂Cl₂, 298 K, 75 MHz) of 4e

Synthesis of PYA 4f

Following the general procedure III and starting from **3f** (1.0 g, 2.23 mmol) yielded compound **4f** as a white solid (618 mg, 86%). ¹H NMR (300 MHz, CD₂Cl₂, 298K) δ = 7.92 (d, ³*J*_{HH} = 2.5 Hz, 1H, C*H*_{prz}), 7.63 (dd, *J*_{HH} = 6.6, 1.7 Hz, 1H, C*H*_{PYA}), 7.57 (dd, *J*_{HH} = 7.3, 1.7 Hz, 1H, C*H*_{PYA}), 6.96 (s, 1H, C*H*_{phe}), 6.91 (d, ³*J*_{HH} = 2.5 Hz, 1H, C*H*_{prz}), 6.71 (dd, ³*J*_{HH} = 7.3 Hz, 6.6 Hz, 1H, C*H*_{PYA}),

3.88 (s, 3H, NC*H*₃), 2.38 (s, 6H, phe-C*H*₃), 2.25 (s, 3H, pyr-C*H*₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) $\delta = 163.41$ (CO), 160.55 (C_{PYA}), 153.37 (C_{prz}), 140.61 (C_{phe}), 140.43 (CH_{PYA}), 139.73 (C_{phe}-Me), 137.74 (CH_{PYA}), 132.72 (C_{PYA}-Me), 128.52 (CH_{phe}), 127.50 (CH_{prz}), 117.36 (CH_{phe}), 112.98 (CH_{PYA}), 109.50 (CH_{prz}), 42.89 (pyr-NCH₃), 21.47 (phe-CH₃), 19.63 (pyr-CH₃) ppm. HR-MS (m/z): calculated for C₁₉H₂₁N4O [M+H]⁺ = 321.1715 ; found: 321.1703.

Figure S46: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of 4f

Figure S47: ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 4f

Synthesis of PYA 4g

Following the general procedure III and starting from **3g** (800 mg, 2.07 mmol) yielded compound **4g** as a white solid (490 mg, 82%). ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 7.59$ (d, ³*J*_{HH} = 6.3 Hz, 1H, C*H*_{PYA}), 7.52 (d, ³*J*_{HH} = 6.8 Hz, 1H, C*H*_{PYA}), 7.41 (d, ³*J*_{HH} = 2.3 Hz, 1H, C*H*_{Prz}), 6.69 (d, ³*J*_{HH} = 2.3 Hz, 1H, C*H*_{Prz}), 6.68 – 6.64 (m, 1H,

 CH_{PYA}), 4.53 (sept, 1H, N_{prz}-C*H*), 3.83 (s, 3H, N_{PYA}-C*H*₃), 2.2 (s, 3H, C-C*H*₃), 1.51 (s, 3H, N_{prz}-C-C*H*₃), 1.49 (s, 3H, N_{prz}-C-C*H*₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) δ = 164.07 (*C*O), 160.34 (*C*_{prz}), 151.13 (*C*_{PYA}), 140.21 (*C*H_{PYA}), 137.66 (*C*H_{PYA}), 132.56 (*C*_{PYA}-Me), 126.95 (*C*H_{prz}), 112.66 (*C*H_{PYA}), 107.30 (*C*H_{prz}), 54.51 (N_{prz}CH), 42.79 (N_{PYA}CH₃), 23.14 (N_{prz}-C-CH₃), 19.6 (C-CH₃) ppm. HR-MS (m/z) calculated for C₁₄H₁₉N₄O [M+H]⁺ = 259.1553; found: 259.1557.

Figure S48: ¹H NMR spectrum (CD₂Cl₂, 298 K, 400 MHz) of 4g

Figure S49: ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 4g

S.1.7 Synthesis of PYA palladium complexes 5a-5g

Scheme S5: General method for the preparation of heteroaryl-PYA Pd complexes 5a-g.

General procedure IV: Under a N2 atmosphere, the neutral PYA 4 (0.5 mmol, 1.05 eq.) and [PdCl₂(cod)] (0.5 mmol, 1 eq.) were dissolved in dry CH₂Cl₂ (5 mL). The mixture was stirred at 23 °C for 2 h and then concentrated to 2 mL. Addition of Et₂O (10 mL) gave a precipitate, which was filtered off, washed several times with Et₂O, and then dried in vacuo to give the corresponding Pd complex 5.

Synthesis of complex 5a

Following the general procedure IV, reaction of **4a** (270 mg, 1.19 mmol) and [PdCl₂(cod)] (308 mg, 1.08 mmol) yielded complex **5a** as a bright orange solid (424 mg, 97%). Spectroscopical data are in agreement with literature values.^{S1 1}H NMR (400 MHz, CD₃CN, 298 K): δ = 9.15 (d, *J*_{HH} = 5.6, 1.5 Hz, 1H, C*H*_{pyr}), 8.38 (d, ³*J*_{HH} = 6.2, 1H, C*H*_{PYA}), 8.23 (d, ³*J*_{HH} = 7.7, 1H, C*H*_{PYA}), 8.16 (td, *J*_{HH} = 7.7, 1.5 Hz, 1H, C*H*_{pyr}), 7.88 (dd, *J*_{HH} = 7.7, 1.6 Hz, 1H, C*H*_{pyr}), 7.69 (ddd, *J*_{HH} = 7.7, 5.6, 1.6 Hz, 1H, C*H*_{pyr}), 7.60 (d, ³*J*_{HH} = 7.7, 6.2, 1H, C*H*_{PYA}), 4.26 (s, 3H, NC*H*₃), 2.49 (s, 3H, PYA-CC*H*₃) ppm.

Figure S50: ¹H NMR spectrum (CD₂Cl₂, 298 K, 400 MHz) of 5a

Synthesis of complex 5b

Complex **5b** was prepared according to the general procedure IV from ligand **4b** (120 mg, 0.5 mmol) and [PdCl₂(cod)] (159.8 mg, 0.5 mmol) and isolated as a yellow powder (190 mg, 95%). Crystals suitable for Xray diffraction were grown by slow diffusion of Et₂O into a CH₂Cl₂ solution of **5b**. ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 8.50$ (d, ³*J*_{HH} = 1.1 Hz, 1H, C*H*_{oxa}), 8.19 (s, 2H, C*H*_{oxa} + C*H*_{PYA}), 8.15 (d, ³*J*_{HH} = 7.8 Hz, 1H, C*H*_{PYA}), 7.51 (dd, ³*J*_{HH} = 7.8, 6.2 Hz, 1H, C*H*_{PYA}), 4.33 (s, 3H, NC*H*₃), 2.57 (s, 3H, C-C*H*₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) $\delta = 163.45$ (CO), 157.94 (*C*_{PYA}), 152.28 (*C*H_{oxa}), 146.05 (*C*H_{PYA}), 141.55 (*C*H_{oxa}), 141.04 (*C*_{oxa}), 138.94 (*C*H_{PYA}), 136.63 (*C*_{PYA}Me), 122.98 (*C*H_{PYA}), 45.53 (N*C*H₃), 18.65 (pyr-*C*H₃) ppm. HR-MS (m/z) calculated for C₁₁H₁₁ClN₃O₂Pd [M-Cl]⁺ = 357.9575; found: 357.9565. Elemental Analysis calculated for C₁₁H₁₁Cl₂N₃O₂Pd x 0.2 CH₂Cl₂ (%): C 32.69, H 2.79, N 10.21%; found: C 32.94, H 2.65, N 9.77%.

Figure S52: ¹³C{¹H} NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 5b

Synthesis of complex 5c

Complex **5c** was prepared according to the general procedure IV from ligand **4c** (50.1 mg, 0.17 mmol) and [PdCl₂(cod)] (74.21 mg, 0.26 mmol) and was obtained as a yellow powder (68.2 mg, 89%). ¹H NMR (400 MHz, DMSO- d_6) $\delta = 9.56$ (s, 1H, CH_{trz}), 8.80 (d, ³ $J_{HH} = 6.2$ Hz, 1H, CH_{PYA}), 8.40 (d, ³ $J_{HH} = 7.6$ Hz, 1H, CH_{PYA}), 7.93 (m, 2H, CH_{Phe}), 7.77 (apparent triplet, 1H,

 CH_{PYA}), 7.67 (m, 3H, CH_{Phe}), 4.26 (s, 3H, $N_{PYA}CH_3$), 2.46 (s, 3H, $C_{PYA}CH_3$) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) δ = 162.30 (CO), 156.00 (C_{PYA}), 145.82 (CH_{PYA}), 143.82 (C_{trz}), 142.41 (CH_{PYA}), 136.67 (C_{Phe}), 135.98 ($C_{PYA}Me$), 130.35 (CH_{Phe}), 130.05 (CH_{Phe}), 125.97 (CH_{PYA}), 123.01 (CH_{trz}), 121.35 (CH_{Phe}), 43.96 ($N_{PYA}CH_3$), 17.54 ($C_{PYA}CH_3$) ppm. HR-MS (m/z) calculated for C₁₈H₁₈ClN₆OPd [M-Cl+CH₃CN]⁺ = 475.03; found: 475.0253. Elemental Analysis calculated for C₁₆H₁₅Cl₂N₅OPd x 0.5 CH₂Cl₂: C 38.62, H 3.14, N 13.65%; found: C 38.77, H 3.12, N 13.46%.

Figure S53: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 400 MHz) of 5c

Figure S54: ¹³C{¹H} NMR spectrum (DMSO-*d*₆, 298 K, 101 MHz) of 5c

Synthesis of complex 5d

Complex 5d was prepared according to the general procedure IV from 4d (76 mg, 0.33 mmol) and [PdCl₂(cod)] (89.85 mg, 0.314 mmol) and was isolated as an orange powder (120 mg, 93%). Crystals suitable for Xray diffraction were grown by slow diffusion of Et₂O into a MeOH solution of 5d. ¹H NMR (400 MHz, CD₂Cl₂) δ = 8.16 - 8.09 (m, 2H, CH_{PYA}), 7.55 - 7.38 (m, 2H, CH_{PYA} + CH_{prz}), 6.65 (d, ${}^{3}J_{HH} = 2.7$ Hz, 1H, CH_{prz}), 4.31 (s, 3H, N_{PYA}-CH₃), 4.23 (s, 3H, N_{prz}-CH₃), 2.57 (s, 3H, C-CH₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) $\delta = 164.97$ (CO), 149.19 (C_{PYA}), 145.63 (CH_{PYA}), 140.69 (CH_{PYA}), 139.52 (C_{PYA}-Me), 135.22 (CH_{prz}), 122.68 (CH_{PYA}), 106.83 (CH_{prz}), 45.41 (N_{PYA}CH₃), 41.62 (N_{prz}CH₃), 18.72 (C-CH₃) ppm. HR-MS (m/z) calculated for $C_{14}H_{17}CIN_5OPd$ [M-Cl+CH₃CN]⁺ = 412.0156; found: 412.0155. Elemental Analysis calculated for C₁₂H₁₄Cl₂N₄OPd x 0.25 CH₂Cl₂: C 34.31, H 3.41, N 13.07%; found: C 34.57, H 3.48, N 12.78.

Figure S56: $^{13}C\{^1H\}$ NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 5d

Synthesis of complex 5e

Complex **5e** was prepared according to the general procedure IV from **4e** (80.2 mg, 0.27 mmol) and [PdCl₂(cod)] (74.3 mg, 0.26 mmol) and was obtained as a yellow powder (113 mg, 93%). ¹H NMR (400 MHz, CD₂Cl₂) δ = 8.16 (d, ³J_{HH} = 6.3 Hz, 1H, CH_{PYA}), 8.12 (d, ³J_{HH} = 7.7 Hz, 1H, CH_{PYA}), 7.69 (d, ³J_{HH} = 2.7

Hz, 1H, CH_{prz}), 7.59-7.46 (m, 6H, $CH_{Phe} + CH_{PYA}$), 6.87 (d, ${}^{3}J_{HH} = 2.7$ Hz, 1H, CH_{prz}), 4.35 (s, 3H, $N_{PYA}CH_3$), 2.62 (s, 3H, $C_{PYA}CH_3$) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CD_2Cl_2 , 298K) $\delta = 164.65$ (CO), 158.61 (C_{PYA}), 151.11 (C_{prz}), 145.63 (CH_{PYA}), 140.77 (CH_{PYA}), 139.36 (C_{Phe}), 138.66 (C_{PYA} -Me), 136.29 (CH_{prz}), 130.33 (CH_{Phe}), 129.23 (CH_{Phe}), 126.72 (CH_{Phe}), 122.63 (CH_{PYA}), 107.67 (CH_{prz}), 45.48 ($N_{PYA}CH_3$), 18.81 ($C_{PYA}CH_3$) ppm. HR-MS (m/z) calculated for $C_{21}H_{19}ClN_5OPd$ [M-Cl+CH₃CN]⁺ = 474.0313; found: 474.0305. Elemental Analysis calculated for $C_{17}H_{16}Cl_2N_4OPd$: C 44.44, H 3.89, N 11.39%; found: C 44.68, H 3.64, N 11.30%.

Figure S57: ¹H NMR spectrum (CD₂Cl₂, 298 K, 400 MHz) of 5e

Figure S58: ¹³C{¹H} NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 5e

Synthesis of complex 5f

Complex **5f** was prepared according to the general procedure IV from ligand **4f** (90.3 mg, 0.28 mmol) and [PdCl₂(cod)] (76.3 mg, 0.267 mmol) and was isolated as a yellow powder (130 mg, 97%). Crystals suitable for Xray diffraction were grown by slow diffusion of Et₂O into a CH₂Cl₂ solution of **5f**. ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 8.24 - 8.05$ (m, 2H, CH_{PYA}), 7.66 (s,

1H, CH_{prz}), 7.49 (m, 1H, CH_{PYA}), 7.17 (m, 3H, CH_{Phe}), 6.84 (s, 1H, CH_{prz}), 4.34 (s, 3H, $N_{PYA}CH_3$), 2.61 (s, 3H, $C_{PYA}CH_3$), 2.40 (s, 6H, Phe-CH₃) ppm. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 298K) δ = 164.32 (CO), 158.26 (C_{PYA}), 150.48 (C_{prz}), 145.18 (CH_{PYA}), 140.39 (CH_{PYA}), 138.95 (C_{Phe}), 138.71 (Phe-CCH₃), 137.85 (C_{PYA} -Me), 135.64 (CH_{prz}), 131.28 (CH_{Phe}), 123.78 (CH_{Phe}), 122.20 (CH_{PYA}), 107.12 (CH_{prz}), 45.03 ($N_{PYA}CH_3$), 20.98 (Phe-CH₃), 18.38 (C_{PYA} -CH₃) ppm. HR-MS (m/z) calculated for C₂₃H₂₃ClN₅OPd [M-Cl+CH₃CN]⁺ = 502.0626; found: 502.0612. Elemental Analysis calculated for C₁₉H₂₀Cl₂N₄OPd x 0.25 CH₂Cl₂: C 44.55, H 3.98, N 10.80%; found: C 44.85, H 3.87, N 10.33%.

Figure S60: ¹³C{¹H} NMR spectrum (CD₂Cl₂, 298 K, 101 MHz) of 5f

Synthesis of heteroaryl-PYA Pd complex 5g

Complex **5g** was prepared according to the general procedure IV from ligand **4g** (101.1 mg, 0.387 mmol) and [PdCl₂(cod)] (106.1 mg, 0.37 mmol) and was obtained as a yellow powder (134.2 mg, 84%). Crystals suitable for Xray diffraction were grown by slow diffusion of Et₂O into a CH₂Cl₂ solution of **5g**.

¹H NMR (400 MHz, CD₂Cl₂) $\delta = 8.21 - 8.03$ (m, 2H, CH_{PYA}), 7.58 (d, ³J_{HH} = 2.7 Hz, 1H, CH_{prz}), 7.48 (apparent triplet, 1H, CH_{PYA}), 6.69 (d, ³J_{HH} = 2.7 Hz, 1H, CH_{prz}), 5.96 (hept, ³J_{HH} = 6.7 Hz, 1H, N_{prz}-CH), 4.31 (s, 3H, N_{PYA}-CH₃), 2.58 (s, 3H, C-CH₃), 1.50 (d, ³J_{HH} = 1.0 Hz, 6H, N_{prz}-C-CH₃) ppm. ¹³C {¹H} NMR (101 MHz, CD₂Cl₂, 298K) $\delta = 165.04$ (CO), 158.88 (C_{PYA}), 148.42 (CH_{PYA}), 145.56 (CH_{PYA}), 140.69 (C_{PYA}-Me), 139.57 (CH_{PYA}), 129.93 (CH_{prz}), 122.66 (CH_{PYA}), 107.09 (CH_{prz}), 54.68 (N_{prz}CH), 45.41 (N_{PYA}CH₃), 23.47 (N_{prz}-C-CH₃), 23.33 (N_{prz}-C-CH₃), 18.75 (C-CH₃) ppm. HR-MS (m/z) calculated for C₁₄H₁₈ClN₄OPd [M-Cl]⁺ = 399.0204; found: 399.0205. Elemental Analysis calculated for C₁₄H₁₈Cl₂N₄OPd: C 38.60, H 4.16, N 12.86%; found: C 38.90, H 4.19, N 12.54%.

Figure S61: ¹H NMR spectrum (DMSO-*d*₆, 298 K, 400 MHz) of 5g

Figure S62: ¹³C{¹H} NMR spectrum (DMSO-*d*₆, 298 K, 101 MHz) of 5g

S.2 Crystal structure determinations

Crystals of 5b, 5d, 5f and 5g immersed in parabar oil were mounted at ambient conditions and transferred into the stream of nitrogen (173 K). All measurements were made on a RIGAKU XtaLAB Synergy R, HyPix-Arc 100 area-detector diffractometer^{S8} using mirror optics monochromated Mo K α radiation (λ = 0.71073 Å). Data reduction was performed using the CrysAlisPro^{S8} program. The intensities were corrected for Lorentz and polarization effects, and a numerical absorption correction based on gaussian integration over a multifaceted crystal model with additional empirical absorption correction using spherical harmonics using SCALE3 ABSPACK in CrysAlisPro^{S8} was applied. All the structures were solved by intrinsic phasing using SHELXT,^{S9} which revealed the positions of all non-hydrogen atoms of the title compound. All non-hydrogen atoms were refined anisotropically. H-atoms were assigned in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for methyl groups). Refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w(F_o^2 - F_c^2)^2$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. All calculations were performed using the SHELXL-2014/7^{S10} program in OLEX2.^{S11} For complex **5d**, areas containing disorder solvents were found where a satisfactory solvent model might not be achieved; therefore, a solvent mask was used to include the contribution of electron density found in void areas into the calculated structure factor. The total number of electrons found in the void areas is shown in Table S3. For complex 5g, a disorder model was used for parts of the structure where the occupancies of each disorder component were refined through the use of a free variable. The sum of equivalent components was constrained to 100%. The structure was refined as a two components inversion twin. Data collection and refinement parameters for 5b, 5d, 5g and 5f are given in Tables S1–S5. Crystallographic data for all structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication numbers 2394912-2394915.

Table S1. Crystal data and structure refinement for 5b

CCDC No	2394912	
Empirical formula	$C_{11}H_{11}Cl_2N_3O_2Pd$	
Formula weight	394.53	
Temperature/K	173.00(10)	
Crystal system	monoclinic	
Space group	I2/a	
a/Å	19.6202(3)	
b/Å	9.6407(2)	
c/Å	14.9332(3)	
α/\circ	90	
β/°	91.131(2)	

$\gamma/^{\circ}$	90
Volume/Å ³	2824.10(9)
Ζ	8
$\rho_{calc} g/cm^3$	1.856
μ/mm^{-1}	1.692
F(000)	1552.0
Crystal size/mm ³	$0.149 \times 0.113 \times 0.087$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.152 to 61.016
Index ranges	$-28 \le h \le 28, -13 \le k \le 13, -21 \le l \le 21$
Reflections collected	41482
Independent reflections	4316 [R _{int} = 0.0271, Rsigma = 0.0145]
Data/restraints/parameters	4316/0/216
Goodness-of-fit on F ²	1.107
Final R indexes [I>2 σ (I)]	R1 = 0.0222, wR2 = 0.0584
Final R indexes [all data]	R1 = 0.0252, wR2 = 0.0595
Largest diff. peak/hole / e Å ⁻³	0.82/-0.51

Table S2. Crystal data and structure refinement for 5d

CCDC No	2394913
Empirical formula	$C_{12}H_{14}Cl_2N_4OPd$
Formula weight	407.57
Temperature/K	173.00(10)
Crystal system	orthorhombic
Space group	Pccn
a/Å	10.97050(13)
b/Å	23.0363(2)
c/Å	14.07250(15)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3556.40(7)
Z	8
$\rho_{calc} g/cm^3$	1.522
μ/mm^{-1}	1.344
F(000)	1616.0
Crystal size/mm ³	$0.314 \times 0.224 \times 0.184$
Radiation	Mo Kα (λ = 0.71073)
2Θ range for data collection/°	4.112 to 61.012
Index ranges	$-15 \le h \le 15, -32 \le k \le 32, -20 \le l \le 20$
Reflections collected	102018
Independent reflections	5437 [Rint = 0.0262, Rsigma = 0.0091]
Data/restraints/parameters	5437/0/184
Goodness-of-fit on F ²	1.110
Final R indexes [I>2 σ (I)]	R1 = 0.0227, wR2 = 0.0603
Final R indexes [all data]	R1 = 0.0247, wR2 = 0.0611
Largest diff. peak/hole / e Å ⁻³	0.52/-0.40

	-
CCDC No	2394914
Empirical formula	$C_{19}H_{20}N_4OCl_2Pd$
Formula weight	497.69
Temperature/K	173.00(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	11.62997(6)
b/Å	14.78476(7)
c/Å	11.92053(6)
α/°	90
β/°	105.0469(5)
$\gamma/^{\circ}$	90
Volume/Å ³	1979.415(18)
Z	4
$\rho_{calc} g/cm^3$	1.670
μ/mm^{-1}	10.184
F(000)	1000.0
Crystal size/mm ³	$0.146 \times 0.124 \times 0.07$
Radiation	Cu K α (λ = 1.54184)
2Θ range for data collection/°	9.466 to 147.46
Index ranges	$-14 \le h \le 14, -18 \le k \le 18, -14 \le l \le 14$
Reflections collected	39723
Independent reflections	4006 [Rint = 0.0381, Rsigma = 0.0136]
Data/restraints/parameters	4006/42/267
Goodness-of-fit on F ²	1.170
Final R indexes [I>2 σ (I)]	R1 = 0.0237, wR2 = 0.0615
Final R indexes [all data]	R1 = 0.0238, wR2 = 0.0615
Largest diff. peak/hole / e Å ⁻³	0.43/-0.51

Table S3. Crystal data and structure refinement for 5f

Table S4. Crystal data and structure refinement for 5g

	8
CCDC No	2394915
Empirical formula	$C_{14}H_{18}Cl_2N_4OPd$
Formula weight	435.62
Temperature/K	173.00(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.91557(12)
b/Å	10.26115(13)
c/Å	18.9836(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1736.70(4)
Z	4
$\rho_{calc} g/cm^3$	1.666
μ/mm^{-1}	1.382

F(000)	872.0
Crystal size/mm ³	$0.338 \times 0.117 \times 0.069$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.292 to 61.008
Index ranges	$-12 \le h \le 12, -14 \le k \le 14, -27 \le l \le 27$
Reflections collected	105258
Independent reflections	5302 [Rint = 0.0409, Rsigma = 0.0141]
Data/restraints/parameters	5302/226/328
Goodness-of-fit on F ²	1.109
Final R indexes [I>2 σ (I)]	R1 = 0.0330, wR2 = 0.0763
Final R indexes [all data]	R1 = 0.0374, wR2 = 0.0781
Largest diff. peak/hole / e Å ⁻³	1.15/-0.43

Table S5. Solvent mask information for 5d

Х	Y	Ζ	Volume	Electron count
-0.118	0.038	0.220	58.6	17.3
0.118	-0.038	0.780	58.6	16.4
-0.118	0.462	0.720	58.6	16.4
0.118	0.538	0.280	58.6	17.4
0.250	0.250	0.490	66.6	17.0
0.250	0.250	-0.010	66.6	17.9
0.382	0.538	0.780	58.6	17.1
0.382	0.962	0.280	58.6	16.6
0.618	0.038	0.720	58.6	17.2
0.618	0.462	0.220	58.6	16.7
0.750	0.750	0.510	66.6	17.8
0.750	0.750	0.010	66.6	17.0
	X -0.118 0.118 -0.118 0.250 0.250 0.382 0.382 0.382 0.382 0.618 0.618 0.750 0.750	X Y -0.118 0.038 0.118 -0.038 -0.118 0.462 0.118 0.538 0.250 0.250 0.250 0.250 0.382 0.538 0.382 0.962 0.618 0.038 0.618 0.462 0.750 0.750	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XYZVolume -0.118 0.038 0.220 58.6 0.118 -0.038 0.780 58.6 -0.118 0.462 0.720 58.6 0.118 0.538 0.280 58.6 0.118 0.538 0.280 58.6 0.250 0.250 0.490 66.6 0.250 0.250 -0.010 66.6 0.382 0.538 0.780 58.6 0.618 0.038 0.720 58.6 0.618 0.462 0.220 58.6 0.750 0.750 0.510 66.6 0.750 0.750 0.010 66.6

S.3 Buried volume calculations

Buried volume calculations were carried out using the SambVca 2.1 Software.^{S12} The calculations were performed using the following parameters: Bond radii scaled by 1.17x; Sphere radius of 3.5; Distance of the coordination point from the center of the sphere 0.0; Mesh spacing for numerical integration 0.10; H atoms were not included in the calculations.

Complex 5b:

%V Free	%V Buried	% V Tot/V Ex
61.4	38.6	99.9

Quadrant	V f	V b	V t	%V f	%V b
SW	27.6	17.2	44.9	61.6	38.4
NW	32.3	12.6	44.9	71.9	28.1
NE	24.4	20.4	44.9	54.5	45.5
SE	25.8	19.1	44.9	57.5	42.5

Steric Map

Complex 5d:

%V Free	%V Buried	% V Tot/V Ex
59.4	40.6	99.9

Quadrant	V f	V b	V t	%V f	%V b
SW	27.8	17.0	44.9	62.1	37.9
NW	30.1	14.8	44.9	67.1	32.9
NE	24.8	20.1	44.9	55.2	44.8
SE	23.9	21.0	44.9	53.3	46.7

Complex 5f:

%V Free	%V Buried	% V Tot/V Ex
57.7	42.3	99.9

Quadrant	Vf	V b	V t	%V f	%V b
SW	21.8	23.0	44.9	48.7	51.3
NW	32.6	12.3	44.9	72.6	27.4
NE	26.6	18.3	44.9	59.3	40.7
SE	22.6	22.2	44.9	50.4	49.6

Complex 5g:

%V Free	%V Buried	% V Tot/V Ex
57.7	42.3	99.9

Quadrant	Vf	V b	V t	%V f	%V b
SW	27.8	17.0	44.9	62.0	38.0
NW	28.1	16.8	44.9	62.5	37.5
NE	21.9	23.0	44.9	48.7	51.3
SE	25.8	19.0	44.9	57.6	42.4

S.4 Catalytic procedures

S.4.1 General procedure for propiophenone α-arylation

Scheme S6: General reaction conditions.

Complex **5a-5g** (0.01 mmol), hexamethylbenzene (0.2 mmol) and NaOtBu (1.1 mmol) were placed in a 10 mL vial. The vial was closed, evacuated and backfilled with N₂ three times. 1,4-dioxane (1mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Samples were taken after one and two hours, diluted in 1,4-dioxane, filtered over celite and analyzed by GC-FID.

S.4.2 Procedure for the acquisition of time-conversion profiles and TOF_{max} determination

Scheme S7: General method for the kinetic profiling.

Complex **5a-5g** (0.01 mmol) were placed in a conical 5 mL vial that was closed, evacuated and backfilled with N_2 three times. Dry 1,4-dioxane (2 mL) and propiophenone (1.2 mmol) were added. In a second, normal shaped 10 mL vial, NaO*t*Bu (1.32 mmol) and the internal standard hexamethylbenzene (0.2 mmol) were weighted in and the vial was closed, evacuated and backfilled with N_2 three times. Dry 1,4-dioxane (2 mL) and bromobenzene (1 mmol) were added. Both solutions were pre-heated to 105 °C. From the aryl halide solution, the time zero sample was taken and diluted in a GC-vial in 1,4-dioxane. The complex solution was then transferred to the aryl halide solution via cannula to start the reaction. Aliquots were taken after given times, diluted in 1,4-dioxane, filtered over celite and analyzed by GC-FID.

Figure S63: Time-conversion profile for the propiophenone α -arylation catalyzed by Pd complexes **5a**-**5d**. The linear regime considered for TOF_{max} evaluation is highlighted by the dotted lines for each catalyst. Slopes derived from these trendlines have been used for TOF_{max} calculation. Reaction conditions: PhBr (1.0 mmol), Propiophenone (1.2 mmol), [Pd] (0.01 mmol), NaOtBu (1.32 mmol), 1,4-dioxane (2.0 mL) in a 10 mL vial, 105 °C under N₂, constant sampling was performed, yield determined by GC analysis using hexamethylbenzene as internal standard. All the experiments were run at least in duplicate.

Figure S64: Linear regression analysis for the determination of the initial rate constant k_{ini} for the propiophenone α -arylation catalyzed by Pd complexes **5a-5d**. To mitigate mixing effects in the first minute of the reaction the conversion happening during the first minute of the reaction was not considered for catalyst activity analysis. Only points included in the linear regime at the maximal TOF were considered to calculate the slopes. Reaction conditions: PhBr (1.0 mmol), Propiophenone (1.2 mmol), [Pd] (0.01 mmol), NaOtBu (1.32 mmol), 1,4-dioxane (2.0 mL) in a 10 mL vial, 105 °C under N₂, sampling as indicated in the graph, yield determined by GC analysis using hexamethylbenzene as internal standard.

Figure S65: Time-conversion profile for propiophenone α -arylation catalyzed by Pd complexes **5d–5g**. The linear regime considered for TOF_{max} evaluation is highlighted by the dotted lines for each catalyst. Slopes derived from these trendlines have been used for TOF_{max} calculation. Reaction conditions: PhBr (1.0 mmol), Propiophenone (1.2 mmol), [Pd] (0.01 mmol), NaOtBu (1.32 mmol), 1,4-dioxane (2.0 mL) in a 10 mL vial, 105 °C under N₂, constant sampling was performed, yields determined by GC analysis using hexamethylbenzene as internal standard. All experiments run at least in duplicate.

Figure S66: Linear regression analysis for the determination of the initial rate constant k_{ini} for the propiophenone α -arylation catalyzed by Pd complexes **5d-5g**. To mitigate mixing effects in the first minute of the reaction the conversion taking place during the first minute of the reaction was not considered for catalyst activity analysis. Only points included in the linear regime at the maximal TOF were considered to calculate the slopes. Reaction conditions: PhBr (1.0 mmol), Propiophenone (1.2 mmol), [Pd] (0.01 mmol), NaOtBu (1.32 mmol), 1,4-dioxane (2.0 mL) in a 10 mL vial, 105 °C under N₂, constant sampling was performed, yield determined by GC analysis using hexamethylbenzene as internal standard.

S.4.3 General procedure for determining the order in palladium complex

Scheme S8: General method for catalyst order determination.

Complex **5a** and **5d** (0.01 mmol), hexamethylbenzene (0.2 mmol) and NaO*t*Bu (1.1 mmol) were placed in a 10 mL vial and evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Aliquots were taken after given times, diluted in 1,4-dioxane, filtered over celite and analyzed with GC-FID. The reaction was repeated under exactly the same conditions at different catalyst loadings from 0.5 mol% to 3 mol% for **5d** and 0.5 mol% to 2 mol% for complex **5a**.

Figure S67: Time-conversion profile at different 5a catalyst loadings in the linear regime, conditions see above.

Figure S68: Time-conversion profile at different 5d catalyst loadings in the linear regime, conditions see above.

Figure S69: Determination of the catalytic rate order in **5d.** a) Evaluation of a 1st order rate dependency in **5d**. In orange the linear regression plot, in green the best power fit giving a catalyst rate order of 0,63. b) Linear plot for a half-order dependence in **5d** and the associated linear plot. Given the broken order calculated from the polynomial fit (in green) and the value obtain for the y-intercept, the possibility of a half-order dependence in **5d** was also explored through variable time normalization analysis (VTNA)^{S13} kinetic studies (Fig. S70–S73) and a log-log plots (Fig. S74). While both the 1st order and ¹/₂ order models equally fit the data, no additional evidence supporting a half-order behavior in **5d** was found. Therefore, only the 1st order hypothesis was considered in subsequent discussions.

Figure S70: Catalyst rate order determination for 5d using VTNA (ref S13) and assuming a 0.5 order in catalyst.

Figure S71: Catalyst rate order determination for **5d** using VTNA (ref S13) and assuming a 0.5 order in catalyst, in blue the overall best polynomial fit giving a $R^2 = 0.9595$.

Figure S72: Catalyst rate order determination for 5d using VTNA (ref S13) and assuming 1st order in catalyst.

Figure S73: Catalyst rate order determination for **5d** using VTNA (ref S13) and 1^{st} order in catalyst, in blue the overall best polynomial fit giving a $R^2 = 0.9501$.

Figure S74: Log-log plots for determining the catalyst rate order revealing a) a slope of 1 and first order dependence in [5a]; b) a slope of 0.63 and a broken order dependence in [5d].

S.4.4 Procedure for determining the rate order in substrates

Scheme S9: General method for determining the order in propiophenone.

Complex **5d** (0.01 mmol), hexamethylbenzene (0.2 mmol) and NaOtBu (1.1 mmol) were placed in a 10 mL vial and evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. The reaction was repeated with the same conditions, keeping the amount of bromobenzene constant, but charged with different amounts of propiophenone from 0.6 mmol to 2 mmol and NaOtBu respectively.

Figure S75: Time-conversion profile at different propiophenone concentrations in the linear regime, conditions see above.

Scheme S10: General method for determining the order in bromobenzene.

Complex **5d** (0.01 mmol), hexamethylbenzene (0.2 mmol) and NaO*t*Bu (1.1 mmol) were placed in a 10 mL vial and evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Aliquots were taken after given times, diluted in 1,4-dioxane, filtered over celite and analyzed with GC-FID. The reaction was repeated with the same conditions but charged with different amounts of bromobenzene from 0.6 mmol to 1.4 mmol.

Figure S76: Time-conversion profile at different bromobenzene concentrations in the linear regime, conditions see above.

S.4.5 Procedures for catalyst poisoning experiments

Scheme S11: Mercury poisoning test.

Complex **5a** or **5d** (0.01 mmol), hexamethylbenzene (0.2 mmol) and NaO*t*Bu (1.1 mmol) were placed in a 10 mL vial and evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. Time 0 sample was taken and the reaction mixture heated (105 °C for **5a**, 90 °C for **5d**). At about 30% conversion (after 12 minutes for **5a**, after 6 min for **5d**), 3 drops of elemental mercury (estimated weight 150 mg, 0,75 mmol) were added to the reaction. Aliquots were taken after given times, diluted in 1,4-dioxane, filtered over celite and analyzed with GC-FID.

Scheme S12: General method for PPh₃ poisoning test.

Same procedure and conditions as used for the mercury poisoning experiment (see S.10.7). Instead of mercury, triphenylphosphine (26.2 mg, 100 μ mol) was added.

Figure S77: Conversion profile of complex **5a** including the normal run (blue), Hg poisoning (green) and PPh₃ poisoning (orange). For experimental details see sections S.10.6 and S.10.7.

Figure S78: Catalytic profile of complex **5d** including the normal run (blue), Hg poisoning (green) and PPh₃ poisoning (orange). For experimental details see sections S.10.6 and S.10.7.

S.4.6 General procedure for temperature screening experiments

Scheme S13: General method for the temperature screening.

Complex **5d** (0.01 mmol), hexamethylbenzene (0.2 mmol) and NaO*t*Bu (1.32 mmol) were placed in a 10 mL vial. The vial was closed, evacuated and backfilled with N₂ three times. 1,4-dioxane (1mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Aliquots were taken after given times, diluted in 1,4-dioxane, filtered over celite and analyzed with GC-FID. The reaction was repeated at different temperatures ranging from 60 °C to 120 °C using the same conditions and set-up.

Figure S79: a) Time-conversion profile for the coupling of propiophenone and bromobenzene catalyzed by **5d** at different reaction temperatures. Reaction conditions: PhBr (1.0 mmol), Propiophenone (1.0 mmol), [Pd] (0.01 mmol), NaOtBu (1.32 mmol), 1,4-dioxane (1.0 mL) in a 10 mL vial, 60-120 °C under N₂, constant sampling was performed, yield determined by GC analysis using hexamethylbenzene as internal standard. b) Eyring plot based on the temperature-dependent data.

S.4.7 Procedure for evaluating air and moisture tolerance

Same set-up and conditions used as previously described in the general α -arylation procedure (see S.10.1) were used except that for the reaction under air (complex **5d**), the vial was closed but not evacuated and backfilled with N₂. Regarding the moisture tolerance experiment, 1,4-dioxane (99.5%) purchased from Carl Roth GmbH and kept under air was used. Additionally, Karl Fischer analysis for the dioxane kept under air revealed 0.3% H₂O content.

S.4.8 Procedure for substrates refilling experiment

Scheme S14: General method for refilling experiment

Complex **5d** (4.12 mg, 0.01 mmol), hexamethylbenzene (32.9 mg, 0.2 mmol) and NaO*t*Bu (106.9 mg, 1.1 mmol) were placed in a 20 mL vial which was evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Aliquots were taken after given times, diluted in 1,4-dioxane, filtered over celite, and analyzed with GC-FID. After 30 minutes at 105 °C, 1 mL of a pre-heated stock solution of NaO*t*Bu (530.4 mg, 5.5 mmol) and bromobenzene (5 mmol) in 1,4-dioxane (5 mL) as well as propiophenone (1 mmol) were added to the reaction mixture. Samples were taken after the same reaction times and the whole refilling process was repeated four times.

S.4.9 Procedure for catalyst recycling experiments

Scheme S15: General method for recycling experiment

Complex **5d** (4.09 mg, 0.01 mmol) and NaO*t*Bu (106.7 mg, 1.1 mmol) were placed in a 10 mL vial which was evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), propiophenone (1 mmol) and bromobenzene (1 mmol) were added. The reaction mixture was heated to 105 °C for 30 minutes without sampling. Meanwhile, another vial was charged with hexamethylbenzene (33.2 mg, 0.2 mmol), NaO*t*Bu (106.3 mg, 1.1 mmol), propiophenone (1 mmol) and bromobenzene (1 mmol). After 30 minutes, the reaction mixture was cooled to room temperature and filtered under N₂ or under air into the new vial

trough a 0.2 μ m syringe filter. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Aliquots were taken after given times, diluted in 1,4-dioxane, filtered over celite, and analyzed with GC-FID. The experiment was repeated using the same conditions, but the filtration was performed under air (Fig. S80).

Figure S80: a) Catalyst recycling experiment for complex **5d** (black: first run; green: second run after filtration under inert atmosphere; orange: second run after filtration under air); b) recycling experiments comparing second runs after filtration in air for 5d and 5g, indicating higher robustness of 5g.

S.4.10 Studies on catalyst activation using 5d

Figure S81: Potential pathways for Pd^0 generation from complexes **5** via reductive C–Cl bond elimination or via β hydrogen elimination followed by reductive HCl elimination.

Procedure for the reactivity study between 5d and NaOtBu: A J-Young NMR tube charged with complex 5d (3.1 mg, $7.6 \mu \text{mol}$) and NaOtBu (1.1 mg, $11.4 \mu \text{mol}$) was evacuated and backfilled with N₂ three times. The solids were suspended in pre-dried and degassed C₆D₆ (0.5 mL), sonicated and analyzed by ¹H-NMR spectroscopy. The reaction mixture heated gradually always for 5 minutes at 30 °C, 40 °C, 50 °C, 60 °C, 70 °C, 80 °C and 90 °C and followed by ¹H-NMR spectroscopy.

Procedure for the reactivity study between 5d and 4-fluoropropiophenone: A stock solution of durene (20.4 mg, 152 µmol) and 4-fluoropropiophenone (10 µL, 80 µmol) was prepared in pre-dried and degassed C₆D₆ (5 mL). A J-Young NMR tube was charged with complex 5d (1.97 mg, 4.8 µmol), evacuated and backfilled with N₂ three times. The prepared stock solution (0.2 mL; 3.2 µmol 4'-fluoropropiophenone, 6.1 µmol durene) and pre-dried and degassed C₆D (0.3 mL) were added and the reaction mixture was briefly sonicated. ¹H and ¹⁹F{¹H}-NMR spectrum were recorded after 10 minutes at room temperature then the reaction mixture was gradually heated to 100°C to evaluate the thermal stability.

Procedure for the reactivity study between 5d, 4-fluoropropiophenone and NaOtBu: A J-Young NMR tube was charged with complex 5d (2.2 mg, 5.4 μ mol) and NaOtBu (4.5 mg, 46.8 μ mol) and evacuated and backfilled with N₂ three times. The previously described 4-fluoropropiophenone stock solution (0.2 mL -> 3.2 μ mol 4'-fluoropropiophenone, 6.1 μ mol durene) and pre-dried and degassed benzene-d6 (0.3 mL) were added to the tube. The initially yellowish solution was analyzed by ¹H and ¹⁹F{¹H}-NMR spectroscopy after 10 minutes, 60 minutes, 120 minutes and 24 hours at 23°C. After 10 minutes a colour change from yellowish to orange was observed together with the formation of an orange precipitate. Over time the reaction mixture slowly turned black.

Figure S82: Stacked ¹H NMR spectra (C_6D_6 , 298 K, 300 MHz) of from bottom to top: saturated suspension of **5d**, a mixture of **5d** (7.6 µmol) and NaO*t*Bu (11.4µmol), a mixture of **5d** (6.8 µmol), durene (380 µmol) and propiophenone (1.6 mmol), a mixture of **5d** (4.8 µmol), durene (152 µmol) and 4-fluoro-propiophenone (80 µmol). Black stars are used to highlight the aromatic proton resonances of the PYA ligand, red stars are used to highlight the N-C*H*₃ resonance of the PYA ligand. The signal of the residual Et₂O from the synthesis was used as an indicator for the drastic solubility increase of the complex in the presence of either a base or a ketone.

Figure S83: Stacked ¹H NMR spectra (C₆D₆, 298 K, 300 MHz) of from bottom to top: saturated suspension of **5d**, a mixture of **5d** (5.4 μ mol) + NaO*t*Bu (47 μ mol) + durene 6.1 μ mol and 4-fluoropropiophenone 3.2 μ mol after 10 min at 23°C, the same reaction mixture after 1h at 23 °C, the same reaction mixture after 16 h at 23 °C, the free ligand **4d** for comparison. Ketone conversion was monitored via comparison with the internal standard and revealed > 90% conv. No more accurate assessment can be made due to the poor shimming.

Figure S84: Stacked ¹⁹F NMR spectra (C₆D₆, 298 K, 282 MHz) of from bottom to top: the 4-fluoropropiophenone stock solution, a mixture of **5d** (5.4 μ mol) + NaOtBu (47 μ mol) + durene (6.1 μ mol) and 4-fluoropropiophenone (3.2 μ mol) after 10 min at 23 °C, the same reaction mixture after 1 h at 23 °C.

S.4.11 General procedure for aryl chloride activation and competitive C-Br vs C-Cl conversion

Complex **5g** (4.18 mg, 10 μ mol), hexamethylbenzene (32.1 mg, 0.2 mmol) and NaO*t*Bu (126.5 mg, 1.32 mmol) were placed in a 10 mL vial and evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), propiophenone (1.2 mmol) and the appropriate aryl chloride (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 125 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Samples were taken after 30 minutes and 60 minutes and analyzed with ¹H-NMR spectroscopy in CDCl₃. No product was detected after 60 minutes at 125 °C.

Scheme S17: General method for the competitive C-Cl vs C-Br activation using catalyst 5g.

Complex **5g** (4.32 mg, 10 μ mol), hexamethylbenzene (30.8 mg, 0.2 mmol), 1-bromo-4-chlorobenzene (190.8 mg, 1 mmol) and NaO*t*Bu (106.4 mg, 1.1 mmol) were placed in a 10 mL vial and evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL) and propiophenone (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Samples were taken after 1, 2 and 20 hours and analyzed by ¹H NMR spectroscopy in CDCl₃. After 20 hours at 105 °C, the reaction mixture was cooled to room temperature and extracted with EtOAc (3 mL), organic layer was filtered over celite and analyzed by GC-MS. ¹H-NMR spectra in CDCl₃ in agreement with literature. ^{S14} Due to incomplete conversion of the starting material, only the aliphatic protons of the product were integrated.

Figure S85: GC-MS chromatogram for the reaction of 1-bromo-4-chlorobenzene and propiophenone catalyzed by complex 5g showing the absence of the brominated product.

Figure S86: MS trace for compound with retention time 30.03 min for the reaction of 1-bromo-4-chlorobenzene and propiophenone catalyzed by complex 5g.

Figure S87: ¹H-NMR spectrum (CDCl₃, 298 K, 300 MHz) for the reaction of 1-bromo-4chlorobenzene and propiophenone catalyzed by complex **5g**.

Scheme S18: Competitive propiophenone arylation in the presence chlorobenzene and bromobenzene using catalyst 5g.

Complex 5g (4.28 mg, 10 μ mol), hexamethylbenzene (33.1 mg, 0.2 mmol) and NaO*t*Bu (105.8 mg, 1.1 mmol) were placed in a 10 mL vial and evacuated and backfilled with N₂. Dry 1,4-dioxane (2 mL), bromobenzene (1 mmol), chlorobenzene (1 mmol) and propiophenone (1 mmol) were added. A sample was taken (time = 0) and the reaction mixture was heated to 105 °C. After 30 seconds, the reaction time was set to zero to account for the heating of the sample. Samples were taken after 1, 2 and 20 h, diluted in 1,4-dioxane, filtered over celite and analyzed by GC-FID.

S.5 References

- S1 E. Reusser and M. Albrecht, *Dalton Trans.*, 2023, **52**, 16688–16697.
- S2 P. Sambasiva Rao, C. Kurumurthy, B. Veeraswamy, G. Santhosh Kumar, Y. Poornachandra, C. Ganesh Kumar, S. B. Vasamsetti, S. Kotamraju and B. Narsaiah, *Eur. J. Med. Chem.*, 2014, 80, 184–191.
- S3 W. A. A. Arafa and A. E.-A. A. Nayl, Appl. Organomet. Chem., 2019, 33, e5156.
- S4 Lifechemicals Shop, https://shop.lifechemicals.com/compound/1/F2146-0680, (accessed 19 December 2023).
- S5 A. Kolarovič, M. Schnürch and M. D. Mihovilovic, J. Org. Chem., 2011, 76, 2613–2618.
- S6 KYN THERAPEUTICS, US Pat., WO2019036657A1, 2019.
- S7 G. M. Ó. Máille, A. Dall'Anese, P. Grossenbacher, T. Montini, B. Milani and M. Albrecht, *Dalton Trans.*, 2021, 50, 6133–6145.
- S8 Oxford Diffraction (2018). CrysAlisPro (Version 1.171.40.37a). Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK.
- S9 G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- S10 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- S11 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- S12 L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano and L. Cavallo, *Nat. Chem.*, 2019, **11**, 872–879.
- S13 J. Burés, Angew. Chem. Int. Ed., 2016, 55, 2028–2031.
- S14 S.-R. Wang and P.-Q. Huang, Chin. J. Chem., 2019, 37, 887–891.