Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supporting Information

The synergistic effects of promoters on adjusting reaction pathway over

iron catalysts for CO2 hydrogenation to CO

Zhongtao Sun^a, Jielang Huang^a, Ling Zhou^{b*}, Yi Zhang^{a*}

^a College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029,

PR China

^b Modern Agricultural Engineering Key Laboratory at Universities of Education Department of

Xinjiang Uygur Autonomous Region, Tarim University, Alar, Xinjiang Uygur Autonomous

Region 843300, China

*Corresponding Authors: Tel &Fax:86-10-64436991

Email: zhoul-007@163.com (L.Z.); yizhang@mail.buct.edu.cn (Y.Z.)

Fig. S1 XRD pattern of fresh catalysts

Fig. S2 Si 2p XPS spectra for various fresh catalysts

Fig. S3 XRD pattern of reduced and spent catalysts. (A) reduced catalysts, (B) spent catalysts

Fig. S4 TEM images of different spent catalysts: (a) 10Fe/SiO₂; (b) 1Pd/10Fe/SiO₂; (c) 2Na10Fe/SiO₂; (d) 1Pd/2Na10Fe/SiO₂

Fig. S5 STEM-EDX elemental mapping of different spent catalysts: (a) 10Fe/SiO₂; (b) 1Pd/10Fe/SiO₂; (c) 2Na10Fe/SiO₂; (d) 1Pd/2Na10Fe/SiO₂

Fig. S6 O 1s XPS spectra for various spent catalysts

Fig. S7 In situ CO₂-DRIFTS results after CO₂ adsorption for various catalysts

Fig. S8 Arrhenius plot for various catalysts

	F-F-F		-	
Catalysts	Conv. (%)	Sel. (%)	Sel. (%)	Sel. (%)
	CO ₂	CO	$C_x H_y^{b}$	C _x H _y OH ^c
10Fe/SiO ₂	2.8	46.4	46.5	7.1
1Pd/10Fe/SiO ₂	6.3	42.8	48.8	8.4
2Na10Fe/SiO ₂	1.0	93.5	4.7	1.8
1Pd/2Na10Fe/SiO ₂	13.2	99.7	0.1	0.2
1Pd/SiO ₂	5.5	92.7	0.6	6.7

 Table S1. Catalytic performance of as-prepared catalysts ^a.

^a Reaction conditions: 300°C, 3.0 MPa, $H_2/CO_2 = 3$, GHSV = 1600 mL/g_{cat} h⁻¹.

^b Include C₁-C₇ hydrocarbon.

^c Include C₁-C₃ alcohol.

Table S2. Elemental compositions of as-prepared detected by ARF and ICP-OE

Samples		Weight content of different species ^b (%)						
	0	Si	Fe	Na	Pd	Fe	Na	Pd
10Fe/SiO ₂	49.6	39.3	11.0	0.0	0.0	9.00	-	-
1Pd/10Fe/SiO ₂	49.2	38.9	11.1	0.0	0.9	8.12	-	0.71
2Na10Fe/SiO ₂	49.1	38.4	10.9	1.6	0.0	8.67	1.75	-
1Pd/2Na10Fe/SiO ₂	48.5	37.7	11.2	1.7	0.9	8.41	1.73	0.70

^a detected by XRF.

^b detected by ICP-OES.

Somulas	Surface area (m^2/z)	Dana walumah (am ³ /a)	Dana sizah (nur)
Samples	Surface area ^a (m ² /g)	Pore volume ^o (cm ³ /g)	Pore size ^o (nm)
SiO_2	496.4	0.78	4.9
10Fe/SiO ₂	414.6	0.58	5.6
1Pd/10Fe/SiO ₂	409.6	0.59	4.9
2Na10Fe/SiO ₂	339.4	0.58	5.6
1Pd/2Na10Fe/SiO ₂	348.9	0.55	4.9

 Table S3. Physical properties of as-prepared catalysts.

a calculated by BET method

b calculated by BJH method

Catalysta	Binding er	nergy (eV)	Content	
Catalysis	Fe 2	2p _{3/2}	(ator	n%)
	Fe ²⁺	Fe ³⁺	Fe ²⁺	Fe ³⁺
10Fe/SiO ₂ -Reduced	710.2	711.5	6.6	93.4
1Pd/10Fe/SiO ₂ -Reduced	709.8	711.3	14.8	85.2
2Na10Fe/SiO ₂ -Reduced	709.6	711.3	4.2	95.8
1Pd/2Na10Fe/SiO ₂ -Reduced	709.5	711.3	10.2	89.8
10Fe/SiO ₂ -Spent	710.1	711.5	17.2	82.8
1Pd/10Fe/SiO ₂ -Spent	709.7	711.4	27.1	72.9
2Na10Fe/SiO ₂ -Spent	709.6	711.5	16.0	84.0
1Pd/2Na10Fe/SiO ₂ -Spent	709.5	711.3	23.1	76.9

Table S4. The results of XPS for Fe $2p_{3/2}$

Catalysts	Biı	nding energy O 1s	(eV)	Content (atom%)			
	Si-O	Vacancy	Lattice	Si-O	Vacancy	Lattice	
10Fe/SiO ₂ -Spent	533.1	531.0	530.0	97.1	0.1	0.2	
1Pd/10Fe/SiO ₂ -Spent	532.8	531.0	530.0	93.4	3.7	2.9	
2Na10Fe/SiO ₂ -Spent	532.7	531.0	530.0	95.3	0.8	3.9	
1Pd/2Na10Fe/SiO ₂ -Spent	532.6	531.0	530.0	90.1	6.3	3.6	

Table S5. The results of XPS for O 1s

The peak at about 530.0, 531.0, 532.8 eV corresponded to the lattice oxygen of iron oxides, the oxygen defects and lattice oxygen of Si-O species^{1–3}. The density of oxygen vacancies could be reflected by content of oxygen defects^{4,5}. As shown in Fig. S6 and Table S5, the density of oxygen defects ranked in the following order: $1Pd/2Na10Fe/SiO_2 > 1Pd/10Fe/SiO_2 > 2Na10Fe/SiO_2 > 10Fe/SiO_2$, indicating the Pd species could facilitate the formation of oxygen vacancies.

Catalysts	Phases	Mössbauer parameters				
		IS (mm/s)	QS (mm/s)	Area (%)		
10E-/SiO Deduced	Fe ²⁺ (spm)	0.70	1.10	7.0		
10Fe/SIO ₂ -Reduced	Fe ³⁺ (spm)	0.34	0.82	93.0		
1Dd/10Ec/SiO Deduced	Fe ²⁺ (spm)	0.93	1.60	15.6		
IPd/IOFe/SIO ₂ -Reduced	Fe ³⁺ (spm)	0.33	0.99	84.4		
2Na10Fe/SiO ₂ -Reduced	Fe ²⁺ (spm)	1.17	1.85	4.1		
	Fe ³⁺ (spm)	0.34	0.88	95.9		
101/001 10E (C'O D 1 1	Fe ²⁺ (spm)	0.71	2.00	12.4		
IPd/2Na10Fe/SiO ₂ -Reduced	Fe ³⁺ (spm)	0.36	0.84	87.6		
10E-/C'O - Current	Fe ²⁺ (spm)	0.70	0.98	19.2		
10Fe/SiO ₂ -Spent	Fe ³⁺ (spm)	0.33	0.86	80.8		
1D1/10E-/C'O Count	Fe ²⁺ (spm)	1.11	1.94	32.2		
1Pd/10Fe/SiO ₂ -Spent	Fe ³⁺ (spm)	0.33	0.98	67.8		
$2N_{e}10E_{e}/CO_{e}C_{e}$	Fe ²⁺ (spm)	0.93	1.60	17.3		
2ina 10Fe/SiO ₂ -Spent	Fe ³⁺ (spm)	0.33	0.99	82.7		
$1DJ/2NI_{2}10E_{2}/S^{2}O_{2}$	Fe ²⁺ (spm)	1.08	1.89	29.0		
1Pd/2Na10Fe/S1O ₂ -Spent	Fe ³⁺ (spm)	0.35	0.90	71.0		

Table S6. Mössbauer parameters of the reduced and spent catalysts

Table S7. The results of XPS for Pd $3d_{5/2}$

Catal.		Con	tent (ato	m%)		
	Pd ⁰	$Pd^{\delta +}$	Pd^{2+}	Pd^0	Pd^{δ^+}	Pd^{2+}
1Pd/10Fe/SiO ₂ -Reduced	335.1	-	337.0	80.0	-	20.0
1Pd/2Na10Fe/SiO ₂ -Reduced	335.0	-	336.7	82.0	-	18.0
1Pd/10Fe/SiO ₂ -Spent	335.1	-	336.8	75.0	-	25.0
1Pd/2Na10Fe/SiO ₂ -Spent	334.6	335.5	336.7	51.0	25.0	24.0

Catalysts	Р	eak area (a.	Content (%)			
	Weak	Medium	Strong	Weak		C.
	basic	basic	basic	basic	Medium	Strong
	sites	sites	sites	sites	basic sites	basic sites
10Fe/SiO ₂ -Spent	1129	1861	2285	21.4	35.3	43.3
1Pd/10Fe/SiO ₂ -Spent	908	3169	2666	13.5	47.0	39.5
2Na10Fe/SiO ₂ -Spent	1708	3713	2143	22.6	49.1	28.3
1Pd/2Na10Fe/SiO ₂ -Spent	1419	4025	3478	15.9	45.1	39.0

Table S8. The integration results of CO₂-TPD profiles

- Lu, F.; Chen, X.; Wang, W.; Zhang, Y. Adjusting the CO₂ Hydrogenation Pathway via the Synergic Effects of Iron Carbides and Iron Oxides. *Catal. Sci. Technol.* 2021, *11* (23), 7694– 7703. https://doi.org/10.1039/D1CY01758F.
- (2) Chen, Y.; Wang, C.; Liu, Y.; Zhang, Q.; Zhou, L.; Zhang, Y. The Pd/ZrO₂ Catalyst Inversely Loaded with Various Metal Oxides for Methanol Synthesis from Carbon Dioxide. *J. Catal.* 2024, 434, 115527. https://doi.org/10.1016/j.jcat.2024.115527.
- (3) Paparazzo, E. XPS Analysis of Oxides. Surf. Interface Anal. 1988, 12 (2), 115–118. https://doi.org/10.1002/sia.740120210.
- (4) Huang, C.; Wu, Z.; Luo, H.; Zhang, S.; Shao, Z.; Wang, H.; Sun, Y. CO₂ Hydrogenation to Methanol over PdZnZr Solid Solution: Effects of the PdZn Alloy and Oxygen Vacancy. ACS Appl. Energy Mater. 2021, 4 (9), 9258–9266. https://doi.org/10.1021/acsaem.1c01502.
- (5) Jiang, F.; Wang, S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y.; Liu, X. Insights into the Influence of CeO₂ Crystal Facet on CO₂ Hydrogenation to Methanol over Pd/CeO₂ Catalysts. *ACS Catal.* 2020, *10* (19), 11493–11509. https://doi.org/10.1021/acscatal.0c03324.