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1. Characterization results

Table S1 Composites of fresh oxides and zeolites by XRF

Entry Sample Mn (mol%) Zr (mol%) Si (mol%) Al (mol%)
Si/Al 

ratio

1 MnOX 100 0

2 8Mn2Zr 78.89 21.11

3 6Mn4Zr 59.35 40.65

4 4Mn6Zr 36.50 63.50

5 2Mn8Zr 19.73 80.27

6 ZrO2 0 100

/

7 H-ZSM-5(30) 97.07% 2.93% 33.12

8 H-ZSM-5(60) 98.32% 1.68% 58.52

9 H-ZSM-5(120) 99.16% 0.84% 118.05

10 H-ZSM-5(200)

/

99.47% 0.53% 187.68
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Figure S1 SEM figures of HZSM-5 with different Si/Al ratio (a) 30; (b) 60; (c) 120; (d) 200.
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Table S2 Crystal size (nm) of oxides calculated by Scherrer equation.

Sample Mn2O3 MnO m-ZrO2 t-ZrO2 Mn0.2Zr0.8O1.8

MnOX* 32.9 / / /

8Mn2Zr* 28.6 / / 10.4

6Mn4Zr* 27.0 / / 9.9

4Mn6Zr* 26.3 / / 9.6

2Mn8Zr* / / / 12.3

ZrO2* /

/

11.0 15.9 /

MnOX** 44.7 /

8Mn2Zr** 29.6 10.8

6Mn4Zr** 29 10

4Mn6Zr** 27.0 10.4

2Mn8Zr** /

/

13.5

ZrO2**

/

/ 13.4 / /

** Obtained from the fresh oxide patterns (figure 1b).

* Obtained from the spent bifunctional catalyst patterns (figure 1d).
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Figure S2 NH3-TPD profile of H-ZSM-5 with different Si/Al ratio.

Table S3 Quantification of acid density over HZSM-5 with different Si/Al ratio (from figure S2)

Acid sites distribution
Si/Al ratio

Weak acid sites Medium strong acid sites Strong acid sites

Total acid sites

μmol/g

30 63.97% 27.93% 8.09% 142.04

60 62.26% 29.63% 8.11% 73.45

120 62.41% 29.71% 7.88% 42.54

200 64.85% 27.24% 7.91% 35.76
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Table S4 Quantification oxides O 1s orbit with different composition (from figure 2b)

Oxides Lattice O (OL) Vacancy O(OV) Chemi-sorbed O(OC)

MnOX 70.77% 13.55% 15.68%

8Mn2Zr 68.57% 19.32% 12.11%

6Mn4Zr 71.96% 20.38% 7.66%

4Mn6Zr 62.78% 21.00% 16.23%

2Mn8Zr 58.34% 28.12% 13.54%

ZrO2 66.31% 22.82% 10.87%

Table S5 Quantification oxides Mn 2p orbit with different composition (from figure 2c)

Oxides Mn2+ Mn3+

MnOX 37.08% 62.92%

8Mn2Zr 46.05% 53.95%

6Mn4Zr 51.46% 48.54%

4Mn6Zr 54.29% 45.71%

2Mn8Zr 59.30% 40.70%
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Table S6 Analysis of in-situ diffuse reflectance infrared spectroscopy (DRIFTS) adsorption peaks

Mode Wavenumber (cm-1) From species Reference wavenumber (cm-1) Reference

v(OH) 3754 Terminal surface -OH 3770  [1]

v(OH) 3687 Methanol / /

v(OH) 3658 Bridged surface -OH 3668  [1]

v(OH) 3582 Ethanol 3000-3700  [2]

vas(CH3) 3009 Methyl 3005  [3]

vas(CH3) 2973 Ethoxyl 2970  [2, 4]

δ(CH) +νas(OCO) 2959 Formate 2965  [5]

vas(CH3) 2929 Methoxyl 2930/2922/2923  [2, 3, 5]

vas(CH2) 2877 Ethoxyl 2875  [2]

v(CH) 2856 Formate 2855  [4]

vs(CH3) 2814 Methanol 2820  [3, 5]

δ(CH) + νs(OCO) 2739 Formate 2751  [5]

δ(CH) + νs(OCO) 2713 Formate 2737  [5]

v(C=O) 1748 Formyl 1756  [6]

v(C=O) 1675/1698 Alkyl-aldehyde 1650-1700  [2]

νas(OCO) 1600 Formate 1593  [7]

vas(OCO) 1583 Formate 1581/1560  [5]

vas(OCO) 1566 Carbonate 1563  [7]

vas(OCO) 1549 Acetate 1547/1545  [2]

vs(OCO) 1437 Carbonate 1426  [7]

v(terminal-CO) 1142 Methoxyl 1149/1154  [5, 8]

v(CO) 1066 Ethoxyl 1065  [2]

v(bridged-CO) 1042 Methoxyl 1047/1043/1052  [5, 8]

v(CO) 1017 Methoxyl / /

The peak at 3687 cm-1 appeared only at H2 abundant environment; moreover, the strength was relative strong, thus we 

ascribed this peak as the adsorption of v(OH) of hydrogen-bonded methanol which was similar with reference [2]. The peak 

at 1017 cm-1 should be the adsorption peak of v(CO), as it appeared and increased during CO adsorption, it was supposed 

relative to methoxyl groups with higher coordination.
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Figure S3. Peak signal of surface species in Figure 3(a).

t-OH (3754 cm-1, v(OH)), b-OH (3658 cm-1, v(OH)), b-formate (1600 cm-1, vas(OCO)), t-formate (1583 cm-1, vas(OCO)), 

methyl (3009 cm-1, vas(CH)), carbonate (1566 cm-1, vas(OCO)), acetate (1549 cm-1, vas(OCO)), MeOH-OH (3687 cm-1, 

v(OH))

Figure S4. Peak signal of surface species in Figure 3(b).

*Methyl group signal was multiplied by 10 to enhance the trend

t-OH (3754 cm-1, v(OH)), b-OH (3658 cm-1, v(OH)), MeOH-OH (3687 cm-1, v(OH)), EtOH-OH (3582 cm-1, v(OH)), methyl 

(3009 cm-1, vas(CH)), b-formate (1600 cm-1, vas(OCO)), t-formate (1583 cm-1, vas(OCO)), acetate (1549 cm-1, vas(OCO)), 

acetaldehyde (1675 cm-1, v(C=O))
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Figure S5. Peak signal of surface species in Figure 4(a).

t-OH (3754 cm-1, v(OH)), b-OH (3658 cm-1, v(OH)), b-formate (1600 cm-1, vas(OCO)), t-formate (1583 cm-1, vas(OCO)), 

methyl (3009 cm-1, vas(CH)), carbonate (1566 cm-1, vas(OCO)), acetate (1549 cm-1, vas(OCO))

Figure S6. Peak signal of surface species in Figure 4(b).

*Methyl group signal was multiplied by 10 and acetate group signal was multiplied by 2 to enhance the trend

t-OH (3754 cm-1, v(OH)), b-OH (3658 cm-1, v(OH)), methyl (3009 cm-1, vas(CH)), b-formate (1600 cm-1, vas(OCO)), t-

formate (1583 cm-1, vas(OCO)), carbonate (1566 cm-1, vas(OCO)), acetate (1549 cm-1, vas(OCO))
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Figure S7 TG profile of bifunctional catalysts. (The fresh catalyst was pre-reduced with same procedure in catalyst 

evaluation section)
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Table S7 Analysis of N2 isothermal adsorption.

Sample
SBET

(m2/g)a

Smicro

(m2/g)b

Vtotal

(cm3/g)c

Vmicro

(cm3/g)b

Fresh bifunctional catalyst* 223.1 30.4 0.25 0.015

Spent bifunctional catalyst 210.8 21.9 0.24 0.011

a BET surface area.
b t-PLOT method for DP ≤ 2nm.
c Total pore volume, P/P0 = 0.99.

* The fresh catalyst was pre-reduced with same procedure in catalyst evaluation section

Figure S8 Pore size distribution of bifunctional catalysts from HK method. (The fresh catalyst was pre-reduced with same 

procedure in catalyst evaluation section)

Figure S9 Cumulative Pore Volume (cm3·g-1) of bifunctional catalysts calculated from HK method. (The fresh catalyst 

was pre-reduced with same procedure in catalyst evaluation section)
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2. Additional reaction results and products distribution

Table S8 reaction results of 6Mn4Zr/H-ZSM-5(60) with different intimacy

Hydrocarbon selectivity
Mixing method

CO 

conversion
CO2 selectivity

Methane C2-C4 paraffin C2-C4 olefin C5
+ Aromatics

Layer mixinga 4.43% 30.53% 3.62% 25.65% 6.51% 19.30% 44.91%

Granule mixing 11.55% 46.08% 1.99% 26.58% 2.57% 7.85% 61.01%

Powder mixing 15.11% 43.86% 2.74% 3.56% 3.26% 5.67% 84.77%

Mass ratio of OX/ZEO = 1; reaction condition: 400 °C, 3 MPa, H2/CO = 2, space velocity = 3000 mL··gcat
-1·h-1

.

a oxides in the up-stream, oxides and zeolites were separated by quartz wool.

Table S9 reaction results of 6Mn4Zr/H-ZSM-5 with different Si/Al ratio

Hydrocarbon selectivitySi/Al ratio of H-

ZSM-5
CO conversion CO2 selectivity

Methane C2-C4 paraffin C2-C4 olefin C5
+ Aromatics

30 15.42% 39.47% 4.90% 9.79% 3.23% 4.03% 78.05%

60 15.11% 43.86% 2.74% 3.56% 3.26% 5.67% 84.77%

120 14.20% 42.73% 3.45% 4.46% 2.79% 7.46% 81.85%

200 14.04% 40.70% 3.85% 4.53% 3.56% 7.39% 80.67%

Mixing method: powder mixing; Mass ratio of OX/ZEO = 1; reaction condition: 400 °C, 3 MPa, H2/CO = 2, space velocity = 3000 mL··gcat
-1·h-1.

Table S10 reaction results of 6Mn4Zr/H-ZSM-5(60) with different mass ratio

Hydrocarbon selectivity
Mass ratio CO conversion CO2 selectivity

Methane C2-C4 paraffin C2-C4 olefin C5
+ Aromatics

1:2 12.44% 39.54% 6.94% 7.54% 1.38% 4.77% 79.37%

1:1 15.11% 43.86% 2.74% 3.56% 3.26% 5.67% 84.77%

1.5:1 14.61% 40.52% 5.07% 3.44% 2.03% 7.46% 81.99%

2:1 12.08% 41.05% 5.29% 2.97% 2.78% 9.71% 79.25%

Mixing method: powder mixing; reaction condition: 400 °C, 3 MPa, H2/CO = 2, space velocity = 3000 mL··gcat
-1·h-1.
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Table S11 reaction results of 6Mn4Zr/H-ZSM-5(60) at different reaction condition

Hydrocarbon selectivityReaction 

Temperature

(°C)

Reaction

Pressure

(MPa)

H2/CO 

ratio

Space 

Velocity

(mL·gcat·h-1)

CO 

conversion

CO2 

selectivity Methane
C2-C4 

paraffin

C2-C4 

olefin
C5

+ Aromatics

350 6.58% 41.01% 2.76% 4.26% 1.47% 3.05% 88.46%

375 11.09% 40.55% 2.73% 4.05% 2.04% 5.08% 86.10%

400 15.11% 43.86% 2.74% 4.56% 2.26% 5.67% 84.77%

425 19.08% 42.44% 6.69% 8.23% 5.56% 5.13% 74.39%

450

3 2 3000

23.51% 40.66% 15.39% 15.00% 8.86% 6.22% 54.53%

1 6.28% 41.52% 2.57% 11.71% 3.65% 11.28% 70.79%

2 10.99% 41.42% 4.21% 4.42% 3.60% 6.29% 81.47%

3 15.11% 43.86% 2.74% 4.56% 2.26% 5.67% 84.77%

4 22.27% 39.60% 11.53% 6.60% 2.26% 5.57% 74.04%

400

5

2 3000

25.15% 41.57% 12.07% 6.93% 1.85% 6.62% 72.53%

1 12.86% 44.10% 1.89% 4.96% 1.07% 6.23% 85.85%

2 15.11% 43.86% 2.74% 4.56% 2.26% 5.67% 84.77%

3 18.52% 36.28% 3.22% 11.71% 1.49% 6.73% 76.85%
400 3

4

3000

19.84% 33.78% 3.85% 14.21% 1.48% 7.65% 72.81%

600 36.36% 41.86% 3.15% 5.02% 2.38% 2.21% 87.24%

1200 26.17% 42.09% 2.72% 4.45% 2.56% 2.76% 87.51%

1800 21.41% 42.56% 2.55% 4.46% 2.76% 2.86% 87.37%

2400 18.21% 42.10% 2.45% 4.85% 2.99% 3.61% 86.10%

400 3 2

3000 15.11% 43.86% 2.74% 3.56% 3.26% 5.67% 84.77%

Mixing method: powder mixing; Mass ratio of OX/ZEO = 1.
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Figure S10 GC profile of organic products (obtained from t = 31 h in stability evaluation).

Qualitative analysis of peaks in figure S10:

For FID1, the peak from 1 to 9 is methane, ethylene, ethane, propylene, propane, n-butane, butene, i-butane, butene

For FID2, the aromatics product peaks were listed here, peak 12 is benzene (it was nearly covered by other peaks); peak 16 is toluene; Peak 20 is mixing 

peak of p-xylene and m-xylene; peak 21 is o-xylene; peak 24 is 1,3,5-trimethylbenzene; peak 26 is 1,2,4-trimethylbenzene; peak 27 is 1,2,3-

trimethylbenzene; peak 35 and 36 is tetramethylbenzene; peak 37+ is heavy aromatics including naphthalene and methylnaphthalene etc.

Table S12 detailed products distribution (calculated from GC profile of figure S10)

Methane Ethylene Ethane Propylene Propane Butane butene
Light Hydrocarbons

2.33% 0.30% 2.70% 0.19% 5.61% 2.33% 0.08%

C5-C6

non-aromatics

C7

non-aromatics

C8

non-aromatics
Benzene Toluene Xylene trimethylbenzene

C10
+ 

aromatics
C5

+ Hydrocarbons

1.99% 0.27% 1.28%
0.37%

(0.45%)

2.45%

(2.95%)

14.79%

(17.84%)

40.54%

(48.89%)

24.77%

(29.87%)

The aromatics distribution was listed in brackets.
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3. Scheme for reaction mechanism over oxides

Scheme S1. Reaction mechanism of syngas conversion over 6Mn4Zr alone.
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