# Direct conversion of syngas to aromatics with two step C-C coupling over MnZr/H-ZSM-5 bifunctional catalyst of OX-ZEO strategy

Shiyu Liu<sup>1</sup>, Qiuyun Huang<sup>1</sup>, Ijaz Ul Haq<sup>1</sup>, Zixu Yang<sup>1</sup>, Weihua Shen<sup>1,\*</sup> and Yunjin Fang<sup>1,\*</sup>

1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

\*Corresponding Author

Email: whshen@ecust.edu.cn(Prof. Shen); yjfang@ecust.edu.cn(Prof. Fang)

Tel: +86-21-64252829

### Content

- 1. Characterization Results
- 2. Additional reaction results and products distribution
- 3. Scheme of reaction mechanism over oxides

Reference

# 1. Characterization results

Table S1 Composites of fresh oxides and zeolites by XRF

|       |                  | 1         |           | <u> </u>  |           |                |
|-------|------------------|-----------|-----------|-----------|-----------|----------------|
| Entry | Sample           | Mn (mol%) | Zr (mol%) | Si (mol%) | Al (mol%) | Si/Al<br>ratio |
| 1     | $MnO_X$          | 100       | 0         |           |           |                |
| 2     | 8Mn2Zr           | 78.89     | 21.11     |           |           |                |
| 3     | 6Mn4Zr           | 59.35     | 40.65     |           |           |                |
| 4     | 4Mn6Zr           | 36.50     | 63.50     |           |           |                |
| 5     | 2Mn8Zr           | 19.73     | 80.27     |           |           |                |
| 6     | $\mathrm{ZrO}_2$ | 0         | 100       |           |           |                |
| 7     | H-ZSM-5(30)      |           |           | 97.07%    | 2.93%     | 33.12          |
| 8     | H-ZSM-5(60)      |           | ,         | 98.32%    | 1.68%     | 58.52          |
| 9     | H-ZSM-5(120)     | /         |           | 99.16%    | 0.84%     | 118.05         |
| 10    | H-ZSM-5(200)     |           |           | 99.47%    | 0.53%     | 187.68         |



Figure S1 SEM figures of HZSM-5 with different Si/Al ratio (a) 30; (b) 60; (c) 120; (d) 200.

Table S2 Crystal size (nm) of oxides calculated by Scherrer equation.

| Sample              | $Mn_2O_3$ | MnO  | m-ZrO <sub>2</sub> | t-ZrO <sub>2</sub> | $Mn_{0.2}Zr_{0.8}O_{1.8}$ |
|---------------------|-----------|------|--------------------|--------------------|---------------------------|
| MnO <sub>X</sub> *  | 32.9      |      | /                  | /                  | /                         |
| 8Mn2Zr*             | 28.6      |      | /                  | /                  | 10.4                      |
| 6Mn4Zr*             | 27.0      | /    | /                  | /                  | 9.9                       |
| 4Mn6Zr*             | 26.3      | /    | /                  | /                  | 9.6                       |
| 2Mn8Zr*             | /         |      | /                  | /                  | 12.3                      |
| $ZrO_2^*$           | /         |      | 11.0               | 15.9               | /                         |
| MnO <sub>X</sub> ** |           | 44.7 |                    |                    | /                         |
| 8Mn2Zr**            |           | 29.6 |                    |                    | 10.8                      |
| 6Mn4Zr**            | 1         | 29   | /                  | 1                  | 10                        |
| 4Mn6Zr**            | /         | 27.0 |                    |                    | 10.4                      |
| 2Mn8Zr**            |           | /    |                    |                    | 13.5                      |
| ZrO <sub>2</sub> ** |           | /    | 13.4               | /                  | /                         |

<sup>\*\*</sup> Obtained from the fresh oxide patterns (figure 1b).

<sup>\*</sup> Obtained from the spent bifunctional catalyst patterns (figure 1d).



Figure S2 NH $_3$ -TPD profile of H-ZSM-5 with different Si/Al ratio.

Table S3 Quantification of acid density over HZSM-5 with different Si/Al ratio (from figure S2)

| Si/Al ratio |                 | Total acid sites         |                   |             |
|-------------|-----------------|--------------------------|-------------------|-------------|
| SI/AI ratio | Weak acid sites | Medium strong acid sites | Strong acid sites | _<br>μmol/g |
| 30          | 63.97%          | 27.93%                   | 8.09%             | 142.04      |
| 60          | 62.26%          | 29.63%                   | 8.11%             | 73.45       |
| 120         | 62.41%          | 29.71%                   | 7.88%             | 42.54       |
| 200         | 64.85%          | 27.24%                   | 7.91%             | 35.76       |

Table S4 Quantification oxides O 1s orbit with different composition (from figure 2b)

| Oxides  | Lattice O (O <sub>L</sub> ) | Vacancy O(O <sub>V</sub> ) | Chemi-sorbed O(O <sub>C</sub> ) |
|---------|-----------------------------|----------------------------|---------------------------------|
| $MnO_X$ | 70.77%                      | 13.55%                     | 15.68%                          |
| 8Mn2Zr  | 68.57%                      | 19.32%                     | 12.11%                          |
| 6Mn4Zr  | 71.96%                      | 20.38%                     | 7.66%                           |
| 4Mn6Zr  | 62.78%                      | 21.00%                     | 16.23%                          |
| 2Mn8Zr  | 58.34%                      | 28.12%                     | 13.54%                          |
| $ZrO_2$ | 66.31%                      | 22.82%                     | 10.87%                          |

Table S5 Quantification oxides Mn 2p orbit with different composition (from figure 2c)

| Oxides  | $Mn^{2+}$ | $Mn^{3+}$ |
|---------|-----------|-----------|
| $MnO_X$ | 37.08%    | 62.92%    |
| 8Mn2Zr  | 46.05%    | 53.95%    |
| 6Mn4Zr  | 51.46%    | 48.54%    |
| 4Mn6Zr  | 54.29%    | 45.71%    |
| 2Mn8Zr  | 59.30%    | 40.70%    |

Table S6 Analysis of in-situ diffuse reflectance infrared spectroscopy (DRIFTS) adsorption peaks

|                                           |                                | <u> </u>             | 17 1                                     |           |
|-------------------------------------------|--------------------------------|----------------------|------------------------------------------|-----------|
| Mode                                      | Wavenumber (cm <sup>-1</sup> ) | From species         | Reference wavenumber (cm <sup>-1</sup> ) | Reference |
| v(OH)                                     | 3754                           | Terminal surface -OH | 3770                                     | [1]       |
| v(OH)                                     | 3687                           | Methanol             | /                                        | /         |
| v(OH)                                     | 3658                           | Bridged surface -OH  | 3668                                     | [1]       |
| v(OH)                                     | 3582                           | Ethanol              | 3000-3700                                | [2]       |
| $v_{\rm as}({ m CH_3})$                   | 3009                           | Methyl               | 3005                                     | [3]       |
| $v_{\rm as}({ m CH_3})$                   | 2973                           | Ethoxyl              | 2970                                     | [2, 4]    |
| $\delta$ (CH) + $\nu$ <sub>as</sub> (OCO) | 2959                           | Formate              | 2965                                     | [5]       |
| $v_{\rm as}({ m CH_3})$                   | 2929                           | Methoxyl             | 2930/2922/2923                           | [2, 3, 5] |
| $v_{\rm as}({ m CH_2})$                   | 2877                           | Ethoxyl              | 2875                                     | [2]       |
| v(CH)                                     | 2856                           | Formate              | 2855                                     | [4]       |
| $v_{\rm s}({ m CH_3})$                    | 2814                           | Methanol             | 2820                                     | [3, 5]    |
| $\delta$ (CH) + $\nu$ <sub>s</sub> (OCO)  | 2739                           | Formate              | 2751                                     | [5]       |
| $\delta$ (CH) + $\nu$ <sub>s</sub> (OCO)  | 2713                           | Formate              | 2737                                     | [5]       |
| v(C=O)                                    | 1748                           | Formyl               | 1756                                     | [6]       |
| ν(C=O)                                    | 1675/1698                      | Alkyl-aldehyde       | 1650-1700                                | [2]       |
| $v_{\rm as}({ m OCO})$                    | 1600                           | Formate              | 1593                                     | [7]       |
| $v_{\rm as}({ m OCO})$                    | 1583                           | Formate              | 1581/1560                                | [5]       |
| $v_{\rm as}({ m OCO})$                    | 1566                           | Carbonate            | 1563                                     | [7]       |
| $v_{\rm as}({ m OCO})$                    | 1549                           | Acetate              | 1547/1545                                | [2]       |
| $v_{\rm s}({ m OCO})$                     | 1437                           | Carbonate            | 1426                                     | [7]       |
| v(terminal-CO)                            | 1142                           | Methoxyl             | 1149/1154                                | [5, 8]    |
| v(CO)                                     | 1066                           | Ethoxyl              | 1065                                     | [2]       |
| v(bridged-CO)                             | 1042                           | Methoxyl             | 1047/1043/1052                           | [5, 8]    |
| v(CO)                                     | 1017                           | Methoxyl             | /                                        | /         |

The peak at 3687 cm<sup>-1</sup> appeared only at  $H_2$  abundant environment; moreover, the strength was relative strong, thus we ascribed this peak as the adsorption of  $\nu(OH)$  of hydrogen-bonded methanol which was similar with reference [2]. The peak at 1017 cm<sup>-1</sup> should be the adsorption peak of  $\nu(CO)$ , as it appeared and increased during CO adsorption, it was supposed relative to methoxyl groups with higher coordination.



Figure S3. Peak signal of surface species in Figure 3(a).

t-OH (3754 cm<sup>-1</sup>,  $\nu$ (OH)), b-OH (3658 cm<sup>-1</sup>,  $\nu$ (OH)), b-formate (1600 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), t-formate (1583 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), methyl (3009 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(CH)), carbonate (1566 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), acetate (1549 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), MeOH-OH (3687 cm<sup>-1</sup>,  $\nu$ (OH))



Figure S4. Peak signal of surface species in Figure 3(b).

\*Methyl group signal was multiplied by 10 to enhance the trend

t-OH (3754 cm<sup>-1</sup>,  $\nu$ (OH)), b-OH (3658 cm<sup>-1</sup>,  $\nu$ (OH)), MeOH-OH (3687 cm<sup>-1</sup>,  $\nu$ (OH)), EtOH-OH (3582 cm<sup>-1</sup>,  $\nu$ (OH)), methyl (3009 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(CH)), b-formate (1600 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), t-formate (1583 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), acetate (1549 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), acetate (1675 cm<sup>-1</sup>,  $\nu$ (C=O))



Figure S5. Peak signal of surface species in Figure 4(a).

t-OH (3754 cm<sup>-1</sup>,  $\nu$ (OH)), b-OH (3658 cm<sup>-1</sup>,  $\nu$ (OH)), b-formate (1600 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), t-formate (1583 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), methyl (3009 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(CH)), carbonate (1566 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), acetate (1549 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO))



Figure S6. Peak signal of surface species in Figure 4(b).

\*Methyl group signal was multiplied by 10 and acetate group signal was multiplied by 2 to enhance the trend t-OH (3754 cm<sup>-1</sup>,  $\nu$ (OH)), b-OH (3658 cm<sup>-1</sup>,  $\nu$ (OH)), methyl (3009 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(CH)), b-formate (1600 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), t-formate (1583 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), carbonate (1566 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO)), acetate (1549 cm<sup>-1</sup>,  $\nu$ <sub>as</sub>(OCO))



Figure S7 TG profile of bifunctional catalysts. (The fresh catalyst was pre-reduced with same procedure in catalyst evaluation section)

Table S7 Analysis of  $N_2$  isothermal adsorption.

| Sample                       | $S_{ m BET}$ | $S_{micro}$ | $V_{\text{total}}$ | $V_{\mathrm{micro}}$ |
|------------------------------|--------------|-------------|--------------------|----------------------|
| Sample                       | $(m^2/g)^a$  | $(m^2/g)^b$ | $(cm^3/g)^c$       | $(cm^3/g)^b$         |
| Fresh bifunctional catalyst* | 223.1        | 30.4        | 0.25               | 0.015                |
| Spent bifunctional catalyst  | 210.8        | 21.9        | 0.24               | 0.011                |

<sup>&</sup>lt;sup>a</sup> BET surface area.

<sup>\*</sup> The fresh catalyst was pre-reduced with same procedure in catalyst evaluation section



Figure S8 Pore size distribution of bifunctional catalysts from HK method. (The fresh catalyst was pre-reduced with same procedure in catalyst evaluation section)



Figure S9 Cumulative Pore Volume  $(cm^3 \cdot g^1)$  of bifunctional catalysts calculated from HK method. (The fresh catalyst was pre-reduced with same procedure in catalyst evaluation section)

 $<sup>^{\</sup>text{b}}$  t-PLOT method for  $D_P\!\leq\!2nm.$ 

 $<sup>^{\</sup>circ}$  Total pore volume,  $P/P_0 = 0.99$ .

### 2. Additional reaction results and products distribution

Table S8 reaction results of 6Mn4Zr/H-ZSM-5(60) with different intimacy

| Mixing method             | СО         | CO calcativity                |         | Ну                                      | drocarbon selectivi                   | ivity                       |           |  |
|---------------------------|------------|-------------------------------|---------|-----------------------------------------|---------------------------------------|-----------------------------|-----------|--|
|                           | conversion | CO <sub>2</sub> selectivity - | Methane | C <sub>2</sub> -C <sub>4</sub> paraffin | C <sub>2</sub> -C <sub>4</sub> olefin | C <sub>5</sub> <sup>+</sup> | Aromatics |  |
| Layer mixing <sup>a</sup> | 4.43%      | 30.53%                        | 3.62%   | 25.65%                                  | 6.51%                                 | 19.30%                      | 44.91%    |  |
| Granule mixing            | 11.55%     | 46.08%                        | 1.99%   | 26.58%                                  | 2.57%                                 | 7.85%                       | 61.01%    |  |
| Powder mixing             | 15.11%     | 43.86%                        | 2.74%   | 3.56%                                   | 3.26%                                 | 5.67%                       | 84.77%    |  |

Mass ratio of OX/ZEO = 1; reaction condition: 400 °C, 3 MPa,  $H_2/CO$  = 2, space velocity = 3000 mL··g<sub>cat</sub>-1·h<sup>-1</sup>.

Table S9 reaction results of 6Mn4Zr/H-ZSM-5 with different Si/Al ratio

| Si/Al ratio of H- | CO acassasian | CO salaativitus               | Hydrocarbon selectivity |                                         |                                       |         |           |  |
|-------------------|---------------|-------------------------------|-------------------------|-----------------------------------------|---------------------------------------|---------|-----------|--|
| ZSM-5             | CO conversion | CO <sub>2</sub> selectivity - | Methane                 | C <sub>2</sub> -C <sub>4</sub> paraffin | C <sub>2</sub> -C <sub>4</sub> olefin | $C_5^+$ | Aromatics |  |
| 30                | 15.42%        | 39.47%                        | 4.90%                   | 9.79%                                   | 3.23%                                 | 4.03%   | 78.05%    |  |
| 60                | 15.11%        | 43.86%                        | 2.74%                   | 3.56%                                   | 3.26%                                 | 5.67%   | 84.77%    |  |
| 120               | 14.20%        | 42.73%                        | 3.45%                   | 4.46%                                   | 2.79%                                 | 7.46%   | 81.85%    |  |
| 200               | 14.04%        | 40.70%                        | 3.85%                   | 4.53%                                   | 3.56%                                 | 7.39%   | 80.67%    |  |

Mixing method: powder mixing; Mass ratio of OX/ZEO = 1; reaction condition: 400 °C, 3 MPa,  $H_2/CO = 2$ , space velocity = 3000 mL··g<sub>cat</sub>-1·h-1.

Table S10 reaction results of 6Mn4Zr/H-ZSM-5(60) with different mass ratio

| Mass ratio | GO            | CO la dissita                 |         | ty                                      |                                       |                             |           |
|------------|---------------|-------------------------------|---------|-----------------------------------------|---------------------------------------|-----------------------------|-----------|
| Mass ratio | CO conversion | CO <sub>2</sub> selectivity — | Methane | C <sub>2</sub> -C <sub>4</sub> paraffin | C <sub>2</sub> -C <sub>4</sub> olefin | C <sub>5</sub> <sup>+</sup> | Aromatics |
| 1:2        | 12.44%        | 39.54%                        | 6.94%   | 7.54%                                   | 1.38%                                 | 4.77%                       | 79.37%    |
| 1:1        | 15.11%        | 43.86%                        | 2.74%   | 3.56%                                   | 3.26%                                 | 5.67%                       | 84.77%    |
| 1.5:1      | 14.61%        | 40.52%                        | 5.07%   | 3.44%                                   | 2.03%                                 | 7.46%                       | 81.99%    |
| 2:1        | 12.08%        | 41.05%                        | 5.29%   | 2.97%                                   | 2.78%                                 | 9.71%                       | 79.25%    |

Mixing method: powder mixing; reaction condition: 400 °C, 3 MPa,  $H_2/CO = 2$ , space velocity = 3000 mL··g<sub>cat</sub>-1··h-1.

<sup>&</sup>lt;sup>a</sup> oxides in the up-stream, oxides and zeolites were separated by quartz wool.

Table S11 reaction results of 6Mn4Zr/H-ZSM-5(60) at different reaction condition

| Reaction         | Reaction          | II /CO                      | Space                                                                                  | СО         | $CO_2$      |         | Hydro                                   | carbon selec                          | ctivity                     |           |
|------------------|-------------------|-----------------------------|----------------------------------------------------------------------------------------|------------|-------------|---------|-----------------------------------------|---------------------------------------|-----------------------------|-----------|
| Temperature (°C) | Pressure<br>(MPa) | H <sub>2</sub> /CO<br>ratio | $\begin{aligned} & Velocity \\ & (mL \cdot g_{cat} \cdot h^{\text{-}1}) \end{aligned}$ | conversion | selectivity | Methane | C <sub>2</sub> -C <sub>4</sub> paraffin | C <sub>2</sub> -C <sub>4</sub> olefin | C <sub>5</sub> <sup>+</sup> | Aromatics |
| 350              |                   |                             |                                                                                        | 6.58%      | 41.01%      | 2.76%   | 4.26%                                   | 1.47%                                 | 3.05%                       | 88.46%    |
| 375              |                   |                             |                                                                                        | 11.09%     | 40.55%      | 2.73%   | 4.05%                                   | 2.04%                                 | 5.08%                       | 86.10%    |
| 400              | 3                 | 2                           | 3000                                                                                   | 15.11%     | 43.86%      | 2.74%   | 4.56%                                   | 2.26%                                 | 5.67%                       | 84.77%    |
| 425              |                   |                             |                                                                                        | 19.08%     | 42.44%      | 6.69%   | 8.23%                                   | 5.56%                                 | 5.13%                       | 74.39%    |
| 450              |                   |                             |                                                                                        | 23.51%     | 40.66%      | 15.39%  | 15.00%                                  | 8.86%                                 | 6.22%                       | 54.53%    |
|                  | 1                 |                             |                                                                                        | 6.28%      | 41.52%      | 2.57%   | 11.71%                                  | 3.65%                                 | 11.28%                      | 70.79%    |
|                  | 2                 |                             |                                                                                        | 10.99%     | 41.42%      | 4.21%   | 4.42%                                   | 3.60%                                 | 6.29%                       | 81.47%    |
| 400              | 3                 | 2                           | 3000                                                                                   | 15.11%     | 43.86%      | 2.74%   | 4.56%                                   | 2.26%                                 | 5.67%                       | 84.77%    |
|                  | 4                 |                             |                                                                                        | 22.27%     | 39.60%      | 11.53%  | 6.60%                                   | 2.26%                                 | 5.57%                       | 74.04%    |
|                  | 5                 |                             |                                                                                        | 25.15%     | 41.57%      | 12.07%  | 6.93%                                   | 1.85%                                 | 6.62%                       | 72.53%    |
|                  |                   | 1                           |                                                                                        | 12.86%     | 44.10%      | 1.89%   | 4.96%                                   | 1.07%                                 | 6.23%                       | 85.85%    |
| 400              | 2                 | 2                           | 2000                                                                                   | 15.11%     | 43.86%      | 2.74%   | 4.56%                                   | 2.26%                                 | 5.67%                       | 84.77%    |
| 400              | 3                 | 3                           | 3000                                                                                   | 18.52%     | 36.28%      | 3.22%   | 11.71%                                  | 1.49%                                 | 6.73%                       | 76.85%    |
|                  |                   | 4                           |                                                                                        | 19.84%     | 33.78%      | 3.85%   | 14.21%                                  | 1.48%                                 | 7.65%                       | 72.81%    |
|                  |                   |                             | 600                                                                                    | 36.36%     | 41.86%      | 3.15%   | 5.02%                                   | 2.38%                                 | 2.21%                       | 87.24%    |
|                  |                   |                             | 1200                                                                                   | 26.17%     | 42.09%      | 2.72%   | 4.45%                                   | 2.56%                                 | 2.76%                       | 87.51%    |
| 400              | 3                 | 2                           | 1800                                                                                   | 21.41%     | 42.56%      | 2.55%   | 4.46%                                   | 2.76%                                 | 2.86%                       | 87.37%    |
|                  |                   |                             | 2400                                                                                   | 18.21%     | 42.10%      | 2.45%   | 4.85%                                   | 2.99%                                 | 3.61%                       | 86.10%    |
|                  |                   |                             | 3000                                                                                   | 15.11%     | 43.86%      | 2.74%   | 3.56%                                   | 3.26%                                 | 5.67%                       | 84.77%    |

Mixing method: powder mixing; Mass ratio of OX/ZEO = 1.



Figure S10 GC profile of organic products (obtained from t = 31 h in stability evaluation).

Qualitative analysis of peaks in figure S10:

For FID1, the peak from 1 to 9 is methane, ethylene, ethane, propylene, propane, n-butane, butene, i-butane, butene

For FID2, the aromatics product peaks were listed here, peak 12 is benzene (it was nearly covered by other peaks); peak 16 is toluene; Peak 20 is mixing peak of p-xylene and m-xylene; peak 21 is o-xylene; peak 24 is 1,3,5-trimethylbenzene; peak 26 is 1,2,4-trimethylbenzene; peak 27 is 1,2,3-trimethylbenzene; peak 35 and 36 is tetramethylbenzene; peak 37+ is heavy aromatics including naphthalene and methylnaphthalene etc.

Table S12 detailed products distribution (calculated from GC profile of figure S10)

| T :=1.4 IId                              | Methane                                      | Ethylene                     | e Ethane                     | Prop             | ylene            | Propane            | Butane             | butene                                 |
|------------------------------------------|----------------------------------------------|------------------------------|------------------------------|------------------|------------------|--------------------|--------------------|----------------------------------------|
| Light Hydrocarbons                       | 2.33%                                        | 0.30% 2.70%                  |                              | 0.19%            |                  | 5.61%              | 2.33%              | 0.08%                                  |
| C <sub>5</sub> <sup>+</sup> Hydrocarbons | C <sub>5</sub> -C <sub>6</sub> non-aromatics | C <sub>7</sub> non-aromatics | C <sub>8</sub> non-aromatics | Benzene          | Toluene          | Xylene             | trimethylbenzene   | C <sub>10</sub> <sup>+</sup> aromatics |
|                                          | 1.99%                                        | 0.27%                        | 1.28%                        | 0.37%<br>(0.45%) | 2.45%<br>(2.95%) | 14.79%<br>(17.84%) | 40.54%<br>(48.89%) | 24.77%<br>(29.87%)                     |

The aromatics distribution was listed in brackets.

## 3. Scheme for reaction mechanism over oxides



Scheme S1. Reaction mechanism of syngas conversion over 6Mn4Zr alone.

#### Reference

- 1. Ouyang, F., et al., *Isotope-exchange reaction between hydrogen molecules and surface hydroxy groups on bare and modified ZrO2*. Journal of the Chemical Society, Faraday Transactions, 1996. **92**(22): p. 4491-4495.
- 2. Ochoa, J.V., et al., *In Situ DRIFTS-MS Study of the Anaerobic Oxidation of Ethanol over Spinel Mixed Oxides.*The Journal of Physical Chemistry C, 2013. **117**(45): p. 23908-23918.
- 3. Wang, X., et al., Effects of surface acid-base properties of ZrO2 on the direct synthesis of DMC from CO2 and methanol: A combined DFT and experimental study. Chemical Engineering Science, 2021. 229: p. 116018.
- 4. Kalered, E., et al., *Infrared Fingerprints of the CO2 Conversion into Methanol at Cu(s)/ZrO2(s): An Experimental and Theoretical Study.* ChemCatChem, 2023. **16**(3): p. e202300886.
- 5. Kattel, S., et al., *Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper.* J Am Chem Soc, 2016. **138**(38): p. 12440-50.
- 6. Li, J., et al., Hollow cavity engineering of MOFs-derived hierarchical MnOx structure for highly efficient photothermal degradation of ethyl acetate under light irradiation. Chemical Engineering Journal, 2023. **464**: p. 142412.
- 7. Qian, W., et al., In Situ DRIFTS Study of Homologous Reaction of Methanol and Higher Alcohols Synthesis over Mn Promoted Cu–Fe Catalysts. Industrial & Engineering Chemistry Research, 2019. **58**(16): p. 6288-6297.
- 8. Ouyang, F., et al., *Site Conversion of Methoxy Species on ZrO2*. The Journal of Physical Chemistry B, 1997. **101**(25): p. 4867-4869.