Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Accelerated photocatalytic hydrogen evolution over donor-acceptor type graphitic carbon nitride

(g-CN) with simultaneous modification of pyrimidine and thiophene rings

Shigen Watanabe,*a Hideyuki Katsumata,*a Monir Uzzaman, Ikki Tateishi, Mai Furukawa, and Satoshi

Kaneco^a

^a Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan.

^b Center for Global Environment Education & Research, Mie University, Tsu, Mie 514-8507, Japan.

*Email: 423M364@m.mie-u.ac.jp (S.W.); hidek@chem.mie-u.ac.jp (H.K)

Fig. S1. The SEM images of (a) UPDB-5, and (b) UPDB-30. The TEM images of (c) UPDB-5, and (d) UPDB-30.

Fig. S2. (a) XRD patterns of each sample. FT-IR spectra of (b) each g-CN, (c) within 1400-1700 cm⁻¹ range, and (d) effect of varying DB amounts.

Fig. S3. The XPS survey spectra of (a) each precursor, and (b) amounts of pyrimidine. The XPS narrow spectra of (c) C 1s, and (d) N 1s.

Sample	C (%)	N (%)	C/N molar ratio
U	42.0	58.0	0.724
UP	44.0	56.0	0.786
UDB	42.9	57.1	0.751
UPDB-5	44.8	55.2	0.812
UPDB-10	44.7	55.3	0.808
UPDB-30	46.8	53.2	0.880

Table S1. Surface atomic ratios of U, UP, UDB, UPDB-5, UPDB-10, and UPDB-30.

Table S2. Proportion of each peak in C 1s and N 1s of each sample.

Sample	C 1s (%) N 1s (%)						
	N=C-N	C=C, C-C	C-NH	π-π*	C-N=C	C-N-H	N-C ₃
U	90.4	3.6	5.9	5.5	70.4	13.8	10.2
UP	82.8	9.6	7.6	4.5	71.2	7.0	17.2

UDB	92.5	4.9	2.6	6.9	67.5	7.4	18.2
UPDB-5	78.8	15.1	6.1	6.3	65.7	10.7	17.3
UPDB-10	81.0	13.7	5.3	6.8	66.1	11.4	15.8
UPDB-30	63.4	26.2	10.4	5.3	66.6	13.1	15.1

Fig. S4. The BET surface areas from N_2 adsorption-desorption isotherms and the BJH pore diameter distribution plots of (a) U, (b) UP, (c) UDB (d) UPDB-5, (e) UPDB-10, and (f) UPDB-30.

Table S3. BET specific surface area, total pore volume, and average pore diameter of U, UP, UDB, UPDB-5, UPDB-10, and UPDB-30.

Sample	$S_{BET} (m^2 g^{-1})$	Total pore volume (cm ³ g ⁻¹)	Average pore diameter (nm)
U	96.3	0.92	38.2
UP	97.0	1.10	45.5
UDB	128	1.24	38.8
UPDB-5	105.2	1.13	43.0
UPDB-10	97.0	0.82	33.7
UPDB-30	73.0	0.60	33.0

Fig. S5. (a) The Uv-Vis DRS spectra, and (b) tauc plots of each g-CN.

Fig. S6. Mott-Schottky plots of (a) U, (b) UP, (c) UDB (d) UPDB-5, (e) UPDB-10, and (f) UPDB-30.

Fig. S7. VBXPS of (a) U, UP, UDB, and UPDB-10, (b) UPDB-5, UPDB-10, and UPDB-30.

Fig. S8. (a) PL spectra, (b) TRPL spectra and (c) EIS Nyquist plots of UPDB-5, UPDB-10, and UPDB-30.

Sample		Lifetime (ns)	R _A %	Average lifetime (ns)
U	τ1	0.74	21.10	
	τ2	2.51	46.06	4.58
	τ3	9.96	32.85	
UP	τ1	0.21	9.65	

Table S4. Average lifetimes of U, UP, UDB, UPDB-5, UPDB-10, and UPDB-30.

τ3 8.88 59.75	
UDB τ_1 0.33 11.28	
τ2 1.52 38.28 3.8	84
τ3 6.34 50.44	
UPDB-5 τ1 0.33 12.05	
τ2 2.02 36.99 5.2	20
τ3 8.67 50.95	
UPDB-10 τ1 0.23 11.84	
τ2 2.10 34.29 5.4	43
τ3 8.70 53.88	
UPDB-30 τ1 0.33 16.30	
τ2 1.94 39.89 4.4	45
τ3 8.27 43.81	

Fig. S9. Photocatalytic hydrogen evolution of (a) amount of DB, and (b) effect of KPH.

Table S5. Comparison of photocatalytic hydrogen evolution activity of carbon nitride-based photocatalysts.

Photocatalysts			H ₂ evolution	AQY (%)	D.C
(mg/mL)	Co-catalysts	Light source	(µmol g ⁻¹ h ⁻¹)	(420 nm)	Rei.
CNS-H (0.71)		50 W LED	17700	16 69 0/	[01]
	3 WI.% PI	(≧ 380 nm)		10.08 %	[51]
$C_{\rm H}C_{\rm N}$ (0.5)	2t 0/ Dt	300 W Xe	2231.8	2.02.0/	[62]
CuCN (0.5)	5 WL.70 FL	(≧ 420 nm)		2.93 70	[32]
NCN-2AP-X	1 wt% Pt	300 W Xe	2550	0 70 %	[52]
(0.25)		(≧ 420 nm)		9.19 70	[33]
HCN-EDA	0.2 wt% Pt	5 W LED	52160	2160/	[54]
(0.25)		White light		51.0 70	[34]
PhSO-TCNx	2 mt 0/ Dt	300 W Xe	8709	12.0 %	[95]
(0.4)	3 Wt.% Pt	(≧ 420 nm)			[33]
B,S-TCN (0.1)	3 wt.% Pt	300 W Xe	0221	5 2 0/	[56]
		(≧ 400 nm)	9321	3.5 70	[30]
UPDB-10 (1)	2 wt.% Pt	300 W Xe	1000	15 50/	This work
		(≧ 420 nm)		13.370	I IIIS WOFK

Fig. S10. (a) XRD patterns, (b) FT-IR spectra, (c) SEM image (10K), and (d) TEM image of UPDB-10 (50K) before and after photocatalytic reaction.

Fig. S11. Most stable optimized structure of (a) U and (b) UPDB, optimized at DFT/B3LYP/6-31g + (d, p) level of theory.

References

[S1] W. Chen, X. Zhao, Q. Zeng, L. Liu, P. Yang, S. Guo, J. Leng, M. Zhong, W. Hong and L. Zhang, *Fuel*, 2025, 381 (Part A), 133329.

- [S2] H. Zhang, Z. Liu, J. Fang and F. Peng, Small, DOI:10.1002/smll.202404929.
- [S3] B. Ye, H. Tang, Q. Liu, W. Wang, L. Wang and J. Hu, Carbon, 2023, 204, 465–474.
- [S4] Z. Li, Y. Chen, J. Pei, X. Zhou, S. Chen and F. Sun, ACS Catal., 2024, 14, 12093–12101.
- [S5] M. Yu, W. Shao, G. Tai, J. Han, G. Wu and W. Xing, Int. J. Hydrogen Energy, 2024, 85, 832-840.

[S6] Z. Mo, Z. Miao, P. Yan, P. Sun, G. Wu, X. Zhu, C. Ding, Q. Zhu, Y. Lei and H. Xu, *J. Colloid Interface Sci.*, 2023, **645**, 525–532.