Supplementary Information for:

Phenylcarbazole-Stabilized Palladium Catalysts for Efficient Acetylene Hydrochlorination

Shahid Ali^{a#}, Lu Wang^{ab#}*, Haijun Yan^a, Lei Dang^a, Chao Yang^a, Jide Wang^a, Hui Sun^{ac}*, Xiaofei Li^b, Ronglan Wu^{ab}, Changhai Liang^d*

^a Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur
Autonomous Region, School of Chemical Engineering, Xinjiang University, Urumqi,
830017, China.

^b China Merchants Xinjiang Quality Testing Technology Research Institute Co., LTD, Urumqi 841100, China.

^c State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.

^d State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116086, China.

**Corresponding author:*

Tel: +86-0991-8581018; *Fax:* +86-0991-8581018

E-mail: wanglu_4951@163.com (Lu Wang); sunhui@ecust.edu.cn (Hui Sun),

changhai@dlut.edu.cn (Changhai Liang)

[#]*The two authors contributed equally to this work.*

Figure Captions:

- Fig S1 Conversion of acetylene over Pd-PCz/SAC catalyst. Reaction conditions: T = 160 °C, GHSV(C₂H₂) = 120 h⁻¹, and V (HCl) : V(C₂H₂) = 1.25
- Fig S2 XRD surveys of Pd-based/SAC catalysts
- Fig S3 TGA and DTG splines of the fresh (a) and used (b) Pd-PCz/SAC catalysts
- Fig S4 XPS surveys of Pd-based/SAC catalysts
- Fig S5 XPS pattern of relative nitrogen content in the fresh (a) and used (b) Pd-PCz/SAC catalysts
- **Fig S6** ESP mapped molecular surface along with ESP array of PdCl₂ & PCz-PdCl₂ (a), PdCl₂-PCz-C₂H₂ (b), PdCl₂-PCz-HCl (c) and PdCl₂-PCz-C₂H₃Cl (d)
- Fig S7 The most favorable adsorption configuration of C_2H_2 , HCl, and VCM with PdCl₂ and PdCl₂-PCz catalyst (all the bond distances are presented in Å)

Table Captions:

- Table S1 Performance of Pd-based catalysts for acetylene hydrochlorination
- Table S2 Relative contents of palladium species in catalysts

Fig. S1 Conversion of acetylene over Pd-PCz/SAC catalysts. Reaction conditions: T = 160 °CGHSV(C₂H₂) = 120 h⁻¹, and V (HCl) : V(C₂H₂) = 1.25

Fig. S2 XRD surveys of Pd-based catalysts

Fig S3 TGA and DTG splines of the fresh (a) and used (b) Pd-PCz/SAC catalysts

Fig. S4 XPS surveys of Pd-based catalysts

Fig S5 XPS pattern of relative nitrogen content in the fresh (a) and used (b) Pd-PCz/SAC catalysts

Fig. S6 ESP mapped molecular surface along with ESP array of PdCl₂ & PCz-PdCl₂ (a), PdCl₂-PCz-C₂H₂ (b), PdCl₂-PCz-HCl (c) and PdCl₂-PCz-C₂H₃Cl (d)

Fig. S7 The most favorable adsorption configuration of C₂H₂, HCl, and VCM with PdCl₂ and PdCl₂-PCz catalyst (all the bond distances are presented in Å)

Year	Catalyst	GHSV (h ⁻¹)	Temp. (°C)	Acetylene Conversion (%)	Life-time (h)	Ref.
2024	Pd-PCz/SAC	120	160	99	380	This work
2024	Pd-DBF/SAC	120	160	99	400	[1]
2024	Pd@20(4-CB)TPPB/USY	120	160	99.9	52	[2]
2023	Pd-20[DBU][C1]/AC	360	180	96	24	[3]
2022	Pd@15ChCl@USY	120	160	99	20	[4]
2021	Pd/UHNTs	150	160	90	94	[5]
2020	0.1Pd/NC800-TA	1000	160	94	20	[6]
2020	PANI/CNT-Pd	120	160	91	20	[7]
2019	(NH ₄) ₂ PdCl ₄ /AC	100	100	99	10	[8]
2019	Pd-A-IL/AC	1000	160	91	10	[9]
2019	0.5Pd-10IL/AC	740	160	98	10	[10]
2019	Pd/7B2-HY	110	160	95	30	[11]
2018	PdCl ₂ /NGCS900	79.2	100	90	20	[12]
2018	Pd NPs@[P ₄₄₄₄][C ₁₇ COO]-C ₁₄	41	180	98	72	[13]
2016	Pd/NH4F-urea-HY	120	160	98	8	[14]
2016	Pd/PANI-HY	110	160	95	300	[15]
2016	Pd-K/NFY	110	160	99	50	[16]
2015	Pd-K/HY	110	160	95	2	[17]
2013	Pd/HY	110	160	95	1	[18]
2010	PdCl ₂ /C	120	160	98	3	[19]

 Table S1 Performance of Pd-based catalysts for acetylene hydrochlorination

Catalysts	Pd^{2+}	Pd ⁰
Fresh Pd/SAC	63	37
Used Pd/SAC	58	42
Fresh Pd-PCz/SAC	68	32
Used Pd-PCz/SAC	65	35

Table S2 Relative content of Pd species in the fresh and used catalysts

References

- [1] S. Ali, L. Wang, H. Yan, C. Yang, J. Wang, H. Sun, X. Li, R. Wu, C. Liang, Enhanced Catalytic Performance of Palladium-Based Catalysts Modified With the Dibenzofuran Ligand for Acetylene Hydrochlorination, Applied Organometallic Chemistry, 2 (2024) 7681.
- [2] D. Lei, L. Wang, H. Yan, Z. Long, C. Yang, J. Wang, Q. Guan, H. Sun, X. Li, R. Wu, C. Liang, Metal immobilized in a USY zeolite-supported (4-CB) TPPB: a new strategy of enhanced stability for acetylene hydrochlorination, Microporous and Mesoporous Materials, 3 (2024) 113204.
- [3] D. Xingzong, G. Liu, Z. Chen, Q. Zhang, Y. Xu, Z. Liu, Enhanced performance of Pd-[DBU][Cl]/AC mercuryfree catalysts in acetylene hydrochlorination, Chinese Journal of Catalysis, 46 (2023) 137.
- [4] L. Zeqing, L. Wang, H. Yan, J. Si, M. Zhang, J. Wang, L. Zhao, C. Yang, R. Wu, Design of choline chloride modified USY zeolites for palladium-catalyzed acetylene hydrochlorination, RSC Advances, 12 (2022) 9923.
- [5] Z. Meng, L. Wang, H. Yan, L. Lian, J. Si, Z. Long, X. Cui, J. Wang, L. Zhao, C. Yang, R. Wu, Palladiumhalloysite nanocomposites as an efficient heterogeneous catalyst for acetylene hydrochlorination, Journal of Materials Research and Technology, 13 (2021) 2055.
- [6] W. Bolin, Y. Yue, C. Jin, J. Lu, S. Wang, L. Yu, L. Guo, R. Li, ZT. Hu, Z. Pan, J. Zhao, Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism, Applied Catalysis B Environmental, 272 (2020) 118944.
- [7] L. Wang S. Ali, J. Si, L. Lian, H. Yan, J. Wang, L. Ma, Carbon nanotubes supported N-promoted Pd-based catalysts for acetylene hydrochlorination, E3S Web of Conferences, 213 (2020) 01004.
- [8] He, H., et al., Design strategies for the development of a Pd-based acetylene hydrochlorination catalyst: improvement of catalyst stability by nitrogen-containing ligands, RSC Advances, 9 (2019) 21557.
- [9] C. Yaqing, Y. Yue, S. Wang, J. Lu, B. Wang, C. Jin, L. Guo, Z. Hu, J. Zhao, Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination, Catalysts, 10 (2019) 24.
- [10] Z. Jia, Y. Yue, G. Sheng, B. Wang, H. Lai, S. Di, Y. Zhai, L. Guo, X. Li, Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene, Chemical Engineering Journal, 360 (2019) 38.
- [11] L. Wang, L. Lian, H. Yan, F. Wang, J. Wang, C. Yang, L. Ma., Acetylene hydrochlorination over borondoped Pd/HY zeolite catalysts, RSC Advances, 9 (2019) 30335.

- [12] L. Pan, M. Ding, L. He, K. Tie, H. Ma, X. Pan, X. Bao, The activity and stability of PdCl₂/C-N catalyst for acetylene hydrochlorination, Science China Chemistry, 61 (2018) 444.
- [13] Y. Lifeng, Q. Yang, J. Hu, Z. Bao, B. Su, Z. Zhang, Q. Ren, H. Xing, Metal nanoparticles in ionic liquid-cosolvent biphasic systems as active catalysts for acetylene hydrochlorination, AIChE J, 64 (2018) 2536.
- [14] L. Wang, F. Wang, J. Wang, Non-mercury catalytic acetylene hydrochlorination over a NH₄F-urea-modified Pd/HY catalyst for vinyl chloride monomer production, New Journal of Chemistry, 40 (2016) 3019.
- [15] L. Wang, F. Wang, J. Wang, Enhanced stability of hydrochlorination of acetylene using polyanilinemodified Pd/HY catalysts, Catalysis Communications, 74 (2016) 55.
- [16] L. Wang, F. Wang, J. Wang, Effect of K promoter on the stability of Pd/NFY catalysts for acetylene hydrochlorination, Catalysis Communications, 83 (2016) 9.
- [17] F. Wang, L. Wang, J. Wang, Y. Zhao, Y. Wang, D. Yang., Bimetallic Pd-K/Y-zeolite catalyst in acetylene hydrochlorination for PVC production. Reaction Kinetics, Mechanisms and Catalysis, 114 (2015) 725.
- [18] L. Wang, F. Wang, J. Wang, X. Tang, Y. Zhao, D. Yang, F. Jia, T. Hao., Hydrochlorination of acetylene to vinyl chloride over Pd supported on zeolite Y, Reaction Kinetics, Mechanisms and Catalysis, 110 (2013) 187.
- [19] Q. Song, S. Wang, B. Shen, J. Zhao, Palladium-based catalysts for the hydrochlorination of acetylene: reasons for deactivation and its regeneration, Petroleum Science and Technology, 28 (2010) 1825.