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Materials and Methods

The chemicals used are all reagent grade products. The sources of chemicals are as follows:

Ferric chloride hexahydrate (FeCl3.6H.O) (Rankem, India), ferrous sulphate heptahydrate
(FeS04.7H20) (SRLchem.com), tetraethyl orthosilicate (TEOS) (Rankem, India), 3-
chloropropylethoxysilan (CPTES) (Aldrich, India), syn-2-Pyridinealdoxime (Aldrich, India),
sodium hexafluorophosphate (NaPFe) (Aldrich, India), palladium chloride (PdCl>) (Spectrochem
Pvt.Ltd., India.), lithium chloride (LiCI) (SRL Chemicals, India) and all the solvent employed
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were obtained from (E. Merck, India). Organic substrates were purchased from Spectrochem

Pvt.Ltd., India, SRL Chemicals, India and TCI chemicals and Aldrich, India.

All the FTIR spectra were recorded using a Perkin-Elmer spectrum 100 FTIR
Spectrophotometer in the range 4000-400 cm™ with samples as KBr pellets. CHN element analysis
was done using the Perkin EImer 2400 series Il CHN analyzer. The surface area was measured at
77.3 K using the Brunauer-Emmett-Teller (BET) method on a standard module NOVA 1000E
from Quantachrome Instruments. The pore size and pore volume were determined using the
Barrett-Joyner-Halenda (BJH) model on a Quantachrome Instruments NOVA 1000E. The powder
X-ray diffraction (XRD) patterns were recorded using a Rigaku X-ray diffractometer (Minifiex,
UK) in the 20 range of 10-70° at 10° min* scanning rate with Cu Ka (k = 0.154 nm) radiation.
The FESEM analysis was done using “JEOL, JSM Model 7200F” model. A JEOL JSM6390LV
scanning electron micrograph attached with an energy-dispersive X-ray detector was used for
SEM-EDX analysis. TEM analysis was done using “FEI COMPANY, USA, TECNAI G2 20 S-
TWIN (200KV) in the resolution of 2.4A. ICP-OES analysis of the compounds was performed
with a Thermo Scientific™ iCAP™ 7600 inductively coupled plasma-optical emission
spectrometer. Vibrating Sample Magnetometer (VSM) were recorded using “Lakeshore,
Model:7410 series”. Thermogravimetric analysis was performed on a SHIMADZU TGA-50
system utilising an aluminium pan under a N, atmosphere at a heating rate of 10 °C min™. The
XPS analysis was performed on an X-ray photo spectrometer of a Thermo Fisher Scientific
Instrument (model ESCALAB Xi+). The *H and 3C NMR spectra were recorded on a JEOL JNM-
ECS400 spectrophotometer using deuterated solvents.

1.1 Catalyst preparation:
1. Synthesis of FezO4 MNPs

Magnetic (FesOs) NPs were synthesized according to the previously reported methods (co-
precipitation)™? using FeCls.6H20 (1.29g, 8 mmol) and FeSO4.7H.0 (1.11g, 4 mmol) in deionized
water (20 mL) under nitrogen atmosphere with continuous stirring for 30 min at 60 ° C. Then a
black precipitate was formed by adding 10 mL ammonium hydroxide (25% in water v/v) and
heated at 60 °C for 1hr. After cooling, the black precipitate was separated using a centrifuge and
washed with deionized water and ethanol until it achieved a neutral pH reading. Then these
magnetic nanoparticles were dried in a hot air oven and preserved for further use.
2. Synthesis of FesO4@TEOS

The MNPs (2g) obtained in the previous steps were dispersed in ethanol (20mL) by sonication
for 20 min. To this solution, 10 mL of deionized water, TEOS (1.5 mL), and NH3 (25%) were
added and stirred for 24hr at room temperature. The resulting Fe;O4@TEOS were collected,

washed with water and ethanol, and dried in an oven at 60 ° C.
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3. Synthesis of FesO4@TEOS-CPTES
The Fe;04@TEOS were functionalized with CPTES by refluxing CPTES (1.5 mL) to a suspension
of silica-coated MNPs (1g) in anhydrous toluene for 12h at 110 °C. After cooling to room
temperature, a brown precipitate was formed and collected by centrifugation and washed with
acetone and dried.
4. Synthesis of Fe3;04@TEOS-CPTES-oxime
For the synthesis of supported oxime ligand, an ethanolic suspension of Fe3;O4@TEOS-CPTES
(500mg) was added to syn 2-pyridinealdoxime (1g, 8mmol) and NaPFs (1.6g, 9.6mmol), and the
mixture was stirred at 60 °C for 24h. The next day, the precipitate was separated by centrifugation
washed with ethanol and dried for further use.
5. Synthesis of Fe3O4@TEOS-palladacycle

In the final step, to a solution of LiPdCly (150mg, 0.57 mmol) in methanol (5SmL), a
methanolic solution of Fe304@TEOS-CPTES-oxime (500mg) and sodium acetate (65mg, 0.8
mmol) was added and stirred for 3 days at room temperature. Finally, the product Fe;O4@TEOS-
Palladacycle was collected by an external magnet, washed with methanol and acetone, dried at 60

°C, and stored for further application in decarbonylative cross-coupling reactions.

Synthesis of bis oxime palladacycle:

OH HO_  OH
=N Lipac,,  _NaOAc (2 eq) NN
Ny 2% T MeOH, it _Pd_
L~ 3 days N PN N
(2 eq) (1 eq)
2-pyridinealdoxime Oxime palladacycle (A)

Scheme S1: Synthesis of oxime palladacycle

In a round bottom flask, palladium chloride (100 mg, 0.56 mmol) and lithium chloride (48
mg, 1.12 mmol) were mixed in methanol (5 mL) and stirred for 5h. Complete conversion to
Li2PdCl4 was confirmed by the change in colour of the reaction medium from brown to reddish
brown. To this, a methanolic solution of syn 2-pyridinealdoxime (68 mg, 0.56 mmol) and sodium
acetate (46 mg, 0.56 mmol) was added. The resultant reaction mixture was stirred for 3 days at
room temperature. To this, water (10 mL) was added, and the corresponding oxime palladacycle
complex precipitated and was filtered off. The residue was washed repeatedly with methanol and
acetone, dried under oven at 60 °C, and stored for further use.®
ICP-OES Analysis
Sample preparation for ICP-OES (Metal digestion):
5 mg of FesOs@TEOS-palladacycle was taken in a beaker and acidify with aqua regia. The
resultant reaction mixture was heated under a hot plate until complete dissolution of palladium
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particle contained in the catalyst. Upon continued heating, the clear and transparent solution
evaporates to dryness. After cooling to room temperature, the residue was dissolved in water and

transferred to a 25 mL volumetric flask. Water was further added to makeup volume.

Characterization Data of the Catalyst
FTIR

(a)-—-Fe O,
(b)-—--FeO,@TEOS
(c)--—-Fe O, @ TEOS-Palladacycle
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Fig. S1 FTIR spectra of (a) Fe;04 (b) FesO4.@TEOS (c) Fe;s0.@TEOS-palladacycle
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Fig. S2 FTIR spectra of (a) FesO.@TEOS-CPTES (b) Fes0.@TEOS-CPTES-0oxime
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Fig. S3 EDX spectra of Fes0,@TEOS-palladacycle
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Fig. S4 FESEM images (a) FesOs MNPs, (b) FesOs@TEOS-palladacycle

HRTEM:

Fig. S5 HRTEM with lattice fringe of FesO4 and Fes04@TEOS-palladacycle
EDS elemental mapping
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(b)

Si Ka1 Fe Ka1

Pd La1

Fig. S6 EDS elemental mapping of (a) Si (b) Fe (c) Pd (d) N and (e) overlap image of
FesO4s@TEOS palladacycle

Maagnetic property:

(a) (b)

Fig. S7 (a) Uniform dispersion and (b, ¢) simple separation of the catalyst using an external

magnetic field
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XPS Analysis:

(a) (b)
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Fig. S8 XPS pattern of (a) N 1s (b) Si 2p (¢) O 1s

Table S1: structural parameters of Fe3O4, Fes04s@TEOS and Fez0s@TEOS-palladacycle

Sample Crystal Surface  Pore Pore Magnetic
structure  area volume diameter  particle
(m?/g) (cm®/g) (nm)? size (nm)°
FesOq Cubic 40.9 0.136 3 10.88
Fes04@TEOS-palladacycle cubic 28.8 0.088 3.8 7.06

3Calculated by the BJH method. "Calculated by the Scherrer equation based on XRD patterns.

Preparation for Phenyl esters:
Representative Procedure of Esters

In a well-corked boiling tube or a small conical flask, mix 0.5 g phenol and 10 mL 5%
NaOH. Benzoyl chloride (2mL) is added in little amounts at a time, and the mixture is vigorously

stirred with occasionally cooling under running or cold water. After 15 minutes, the solid benzoate
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separates, and the solution should be alkaline at the end of the reaction; if it is not alkaline or oily,
add another solid pellet of NaOH and shake. Collect the benzoate, wash it thoroughly with cold

water, and then recrystallize it in ethanol.

o) OH o) /@
A Cl NaOH N 6]
| % - RT, 15-30 mints |//
R1/ ’ R;

R1= H, CH3, OCH3

Scheme S2: Synthesis of aryl esters

Pd-Catalyzed Decarbonylative Cross-Coupling

A 50-mL round bottom flask containing a magnetic stirring bar was dried with a heat gun
in vacuo for 2 min and filled with N after cooling to room temperature. The RB was charged with
a mixture of aromatic ester 1 (1 mmol), arylboronic acid 2 (1.2 mmol), K2CO3 (2 mmol), catalyst
(15 mg, 0.0171 mmol Pd) and 2Me-THF (4 mL). The reaction mixture was stirred at reflux in an
oil bath for 12 h. After the reaction mixture had cooled to room temperature, it was diluted with
EtOAc. The filtrate was concentrated in vacuo and the residue was purified by silica-gel column

chromatography to afford biaryl 3.

o — —_—
R1~®—< 4 QB(OH)Z Fes0,@TEOS-palladacycle (
OPh R2 \ K2003, 2-Me THF

reflux, N,

I

RZ

Reaction Optimization:

Effect of solvents on decarbonylative cross-coupling reactions of esters
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Fig. S9 Effect of solvents on decarbonylative cross-coupling reactions of esters

Effect of bases on decarbonylative cross-coupling reactions of esters
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Fig. S10 Effect of bases on decarbonylative cross-coupling reactions of esters
General procedure for scale up synthesis:

A 250-mL round bottom flask containing a magnetic stirring bar was dried with a heat gun
in vacuo for 2 min and filled with N> after cooling to room temperature. The RB was charged
with a mixture of aromatic ester 1 (1g, 5 mmol), arylboronic acid 2 (0.8g, 6mmol), K2COs
(1.39,10 mmol), catalyst (75 mg, 0.08 mmol Pd) and 2Me-THF (20 mL). The reaction
mixture was stirred at reflux in an oil bath for 12 h. After the reaction mixture had cooled to
room temperature, it was diluted with EtOAc. The filtrate was concentrated in vacuo and the
residue was purified by silica-gel column chromatography to afford biaryl 3 (0.74g, yield
87.2%).

Scale-up synthesis of Cross-coupling product
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Fe304@TEOS-Palladacycle

Me
Q /@ . B(OH), (0.08 mmol Pd) N O
@o 2-MeTHF, reflux O
Me

K,CO3, N,
1 2 3

19,5 mmol 1.2 equiv. 0.74 g, 87% yield

Procedures for the total synthesis of Boscalid:

i) Procedure for Suzuki—-Miyaura Coupling

A 100-mL round bottom flask containing a magnetic stirring bar was dried with a heat gun in
vacuo for 2 min and filled with N after cooling to room temperature. The RB was charged with
phenyl 2-aminobenzoate (300mg, 1.4 mmol), 4-chloro boronic acid (262 mg, 1.7mmol), K2CO3
(2.8 mmol), catalyst (25 mg, 0.03 mmol Pd) and 2Me-THF (6 mL). The reaction mixture was
stirred at reflux in an oil bath for 12 h. After the reaction mixture had cooled to room temperature,
it was diluted with EtOAc. The filtrate was concentrated in vacuo and the residue was purified by
silica-gel column chromatography to afford biaryl, 4'-chloro-[1,1'-biphenyl]-2-amine (187 mg,
yield 65%).

B(OH),

. g
N Fe304,@TEOS-palladacycle NH,
O K,CO3, Ny,
NH, Cl 2—Me'|;|;r|:, reflux O

Cl
1.4 mmol 1.7 mmol Yield= 65%

ii) Procedure for acid-amine coupling for the synthesis of Boscalid:

To a stirred solution of 2-chloronicotinic acid (157 mg, 1 equiv.) in N,N-dimethylformamide (6
mL), N,N-diisopropylethylamine (390 mg, 3equiv.) and
hexafluorophosphate azabenzotriazole tetramethyl uronium (HATU) (760 mg 3.0 equiv.) were
added at 0°C and stirred for 10 minutes. Then, 4-chloro-[1,1’-biphenyl]-2-amine (245 mg, 1.2
equiv.) in N,N-dimethylformamide (2 mL) was added and reaction mixture was stirred at room
temperature for 2 h. After completion of reaction, ice cold water was added to reaction mixture,
and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulphate,
filtered and concentrated under reduced pressure to get crude which was purified by silica gel
column chromatography using ethyl acetate- hexane to afford Boscalid, off white solid. Yield: 160
mg, 73%.
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Boscalid

0 °C-rt, 2h
Acid-amine
coupling

HATU, DIPEA
DMF

OH

=\NH2 v
Cl
Yield= 65%

Hot filtration test and Reusability:

Scheme S3 Synthesis of Boscalid
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Fig. S11 (a) Hot filtration test; (b) Recyclability of the catalyst

Characterization of reused catalyst:

Reused Fe,O,@TEOS-Palladacycle
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Fig. S12 (a) FTIR spectra (b) P-XRD pattern and (c) TEM images of the catalyst after 5™ cycle

Test for elimination of CO gas

A phosphomolibdic acid (PMA)-PdCI2 test was performed to confirm that CO was
removed from the reaction mixture (Figure S9, ESI). In this experiment, phosphomolybdic acid
[H3PO4(MoV'03)12] with catalytic amount of PdCI, oxidises the evolved CO gas into CO2. This
reaction reduces the yellow-colored phosphomolybdic acid to a blue-green-mixed valence
heteropolymolybdate complex (Mo Mo").*
Preparation of PMA-PdCI: solution: 50 mg PdClI, was dissolved in 2 drops of conc. HCI and
was diluted with 5 mL of distilled water. Additionally, a cold saturated solution of
phosphomolybdic acid (PMA) in water was prepared and then both the solution was mixed in a
separate vial in 1:2 (PMA: PdCI) ratio. Now, this PdCl2: PMA solution was applied some narrow
piece of filter paper, which were then dried at room temperature for 1 hr. Then, one strip of the
above dried filter paper was inserted into a 50 mL reaction RB using a septum as shown in the fig
S9. The reaction mixture was heated at 100°C, as time passes, the yellow colour strip was changes
to a dark-blue colour, suggesting the evolution of CO gas from the reaction mixture.
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Fig. S13 Evolution of CO gas: Colour change of PMA-PdCl; strips before and after reaction

Comparison of the present catalytic system with other reported catalysts:

Table S2. Comparative Study of the present catalyst with earlier reported catalysts for the
decarbonylative cross-coupling reaction of aryl boronic acid with different electrophiles to afford

biaryl.
SL | Catalyst Reaction condition | Coupling | Yield Re- Ref.
patners (%) usability
1 | Ni(OAc)2 (5 mol%), | ArB(OH)2, Na,COs, | Aryl esters | 99% NA 5
P(n-Bu)z (20 mol%) | toluene, 150 °C, 24 h
2 | Ni(COD); (10 ArB(OH)z, Cs2COs, | Aryl esters | 51% NA 6
mol%,), PCys (20 toluene, 110 °C, 24h
mol%)
3 | Pd(OAC)2 (5 mol%), | ArB(OH)2, Na;COs, | 2- 92% NA 7
dcype (12 mol%) toluene, 130 °C, 12h | azinecarbo
xylate
4 | Ni(COD)2 (10 ArB(OH)2 ,t-BuOK, | Ethyl 81% NA 8
mol%,), PCys (20 toluene, 120 °C, 20h | Benzolh]q
mol%) uinoline-
10-
carboxylat
e
5 | Pd(OAC)2 (5 mol%), | ArB(OH)2, EtsN, Carboxyli | 95% NA 9
dppb (10 mol%) dioxane, 160 °C ,15 | c acids
h
6 | [(1-tBu-ind)PdCI]. | ArB(OH)2, Aroyl 92% NA 10
(7.5 mol%), PPhs NaHCOs3,1,4- Chlorides
(30 mol%) dioxane, 160 °C, 15
h
7 | Pd(OAC)2 (5 mol%), | ArB(OH)z, Piv20, Heterocycl | 92% NA 11
1,4- H3BO3 Et3N, ic
bis(diphenylphospha | dioxane, 160 °C, 15 | carboxylic
neyl)butane (10 h. acids
mol%)
8 FesOs@TEOS- ArB(OH)2, K2COs, | Aryl 91% 5times | present
palladacycle (1.71 2-Me-THF, 100 °C, | esters work
mol% Pd) 10h
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HR-MS data of oxime palladacycle:
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Characterization data of the starting materials of the Suzuki-type decarbonylative cross-

coupling reaction

2 )
@O
Phenyl benzoate: *H NMR (400 MHz, CDCl3) & 8.23 (d, J = 12.0 Hz, 2H), 7.64 (dd, 1H), 7.54 -

7.42 (M, 4H), 7.30 -7.22(m, 3H). *C NMR (100 MHz, CDCls) § 165.31, 151.10, 133.71, 130.30,
129.71, 129.62, 128.70, 126.01, 121.85

? Q)
@*"
H,CO
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Phenyl 4-methoxybenzoate: *H NMR (400 MHz, CDCls) § 8.15 (d, J = 12.0 Hz, 2H), 7.42 (dd,
2H), 7.26 (m, 3H), 6.99 (d, J = 8.0 Hz, 2H), 3.90 (s, 3H). *3C NMR (100 MHz, CDCl3) § 165.04,
163.98, 151.16, 132.39, 129.53, 125.82, 121.98, 121.90, 113.94, 54.76

Qioﬁi

Phenyl 4-methylbenzoate: *H NMR (400 MHz, CDCls) § 8.09 (d, J = 8.04 Hz, 2H), 7.48 — 7.35
(m, 2H), 7.37-7.15 (m, 5H), 2.45 (s, 3H). *C NMR (100 MHz, CDCl3) & 165.36, 151.14, 144.50,
130.32, 129.55, 129.38, 126.93, 125.88, 121.86, 21.85

Characterization data of the product of the Suzuki-type decarbonylative cross-coupling
reaction

4,4'-dimethyl-1,1'-biphenyl (Table 2, entry 1): *H NMR (400 MHz, CDCl3) § 7.48 (d, J = 8.0
Hz, 4H), 7.24 (d, J = 8.0 Hz, 4H), 2.39 (s, 6H)

ee)

4-methyl-1,1'-biphenyl (Table 2, entry 2): *H NMR (400 MHz, CDCls): § 7.60-7.57 (m, 2H),
751-741 (m, 3H), 7.35-7.31 (m, 3H), 7.27-7.23 (m, 2H), 240 (s, 3H).

CHj

3,4'-dimethyl-1,1"-biphenyl (Table 2, entry 3): 1H NMR (400 MHz, CDCls): 6 7.63-7.61 (dd, J
=8.0, 1.8 Hz, 2H), 7.54-7.36 (m, 5H), 7.30-7.26 (m, 1H), 2.55 (s, 3H), 2.52 (s, 3H)

CN

4'-methyl-[1,1'-biphenyl]-3-carbonitrile (Table 2, entry 4): 'H NMR (400 MHz, CDCls): &
7.87-7.77 (m, 2H), 7.63-7.44 (m, 4H), 7.26 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H)

4-methoxy-4'-methyl-1,1'-biphenyl (Table 2, entry 5): *H NMR (400 MHz, CDCls): & 7.53 —
7.43 (m, 4H), 7.24 (dt, J = 7.8, 0.7 Hz, 2H), 6.98- 6.94 (m, 2H), 3.84 (s, 3H), 2.38 (s, 3H)
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CHj;

4'-methoxy-3-methyl-1,1'-biphenyl (Table 2, entry 6): *H NMR (400 MHz, CDCls) § 7.53-7.50
(m, 2H), 7.36- 7.33 (m, 4H), 7.11-6.95 (m, 2H), 3.84 (s, 3H), 2.41 (s, 3H)

4-chloro-4'-methoxy-1,1'-biphenyl (Table 2, entry 7): *H NMR (400 MHz, CDCl3) § 7.50- 7.44
(m, 4H), 7.38-7.35 (m, 2H), 6.98-6.95 (m, 2H), 3.93 (d, J = 73.9 Hz, 3H).

4,4'-dimethoxy-1,1'-biphenyl (Table 2, entry 8): *H NMR (400 MHz, CDCl3) & 7.46 (d, J = 8.9
Hz, 4H), 6.95 (d, J = 8.9 Hz, 4H), 3.83 (s, 6H)

4-methoxy-1,1'-biphenyl (Table 2, entry 9): *H NMR (400 MHz, CDCls) § 7.53-7.51 (m, 4H),
7.43-7.39 (m, 3H), 7.29-6.96 (m, 2H), 3.84 (s, 3H)

4-methoxy-4'-nitro-1,1'-biphenyl (Table 2, entry 10): *H NMR (400 MHz, CDCls) § 8.26 (d, J
=8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 3.86 (s,
3H)

(0]
CH,

4-acetyl-4'-methoxybiphenyl (Table 2, entry 11): *H NMR (400 MHz, CDCls) § 8.00 (d, J =
8.0 Hz, 2H), 7.60 (m, 4H), 6.99 (d, J = 8.0 Hz, 2H), 3.85 (s, 3H), 2.62 (s, 3H). 1*C NMR (100
MHz, CDClIs) 6 197.92, 159.99, 145.47, 135.34, 132.33, 129.07, 128.48, 126.72, 114.49, 55.49,
26.77

4'-methoxy-[1,1'-biphenyl]-4-carbaldehyde (Table 2, entry 12): *H NMR (400 MHz, CDCls)
§10.02 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.00
(d, J = 8.0 Hz, 2H), 3.86 (s, 3H)
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4-methoxy-4'-methyl-1,1'-biphenyl (Table 2, entry 13): *H NMR (400 MHz, CDCls) § 7.52-
7.49 (m, 2H), 7.46-7.43 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 3.84 (s, 3H),
2.38 (s, 3H)

ast

[1,1'-biphenyl]-3-carbonitrile (Table 2, entry 14): *H NMR (400 MHz, CDCls) § 7.84-7.79 (m,
2H), 7.62-7.39 (m, 7H)

OO

4-chloro-1,1'-biphenyl (Table 2, entry 15): *H NMR (400 MHz, CDCl3) § 7.56 (d, J = 1.4 Hz,
1H), 7.53 (d, J = 5.2 Hz, 1H), 7.50 (s, 2H), 7.45 (d, J = 8.2 Hz, 2H), 7.42 -7.35 (m, 3H)

OO

4-methoxy-1,1'-biphenyl (Table 2, entry 16): *H NMR (400 MHz, CDCl3) § 7.52 (d, J = 8.0 Hz,
4H), 7.45-7.36 (m, 2H), 7.35-7.25 (m, 1H), 6.96 (d, J = 8.0 Hz, 2H), 3.84 (s, 3H)

OO

1,1'-biphenyl (Table 2, entry 17): *H NMR (400 MHz, CDCl3) § 7.56-7.51 (m, 4H), 7.43-7.34
(m, 2H), 7.38-7.28 (m, 1H), 7.17-7.09 (m, 3H)

4-nitro-1,1'-biphenyl (Table 2, entry 18): *H NMR (400 MHz, CDCls) & 8.29 (d, J = 8.0 Hz,
2H), 7.73 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.51-7.43 (m, 3H)

CF;

3-(trifluoromethyl)-1,1'-biphenyl (Table 2, entry 19): *H NMR (400 MHz, CDCls) § 7.90 (s,
1H), 7.78-7.63 (m, 1H), 7.64-7.56 (m, 4H), 7.56-7.42 (m, 3H)

‘ CH3

3-methyl-1,1'-biphenyl (Table 2, entry 20): *H NMR (400 MHz, CDCl3) § 7.60 (d, J = 8.0 Hz,
1H), 7.47-7.33 (m, 5H), 7.19-7.16 (m, 3H), 2.43 (s, 3H)
518




Oeon

4-Acetylbiphenyl (Table 2, entry 21): *H NMR (400 MHz, CDCls) § 8.03 (d, J = 8.0 Hz, 2H),
7.70-7.61 (m, 4H), 7.48-7.37 (m, 3H), 2.63 (s, 3H); 1*C NMR (100 MHz, CDCls3) § 197.92, 145.90,
139.97, 135.93, 129.06, 129.02, 128.34, 127.38, 127.34, 26.79

OO

4-fluoro-1,1'-biphenyl (Table 2, entry 22): 'H NMR (400 MHz, CDCls3) & 7.56- 7.52 (m, 4H),
7.45-7.41 (m, 2H), 7.36-7.32 (m, 1H), 7.15-7.10 (m, 2H)

HsCO ‘

2-(4-methoxyphenyl) naphthalene (Table 2, entry 23): *H NMR (400 MHz, CDCls) & 7.94-7.83
(m, 3H), 7.53-7.40 (m, 6H), 7.04 (d, J = 8.0 Hz, 2H), 3.90 (s, 3H)

g8

N
O
H,CO

6-(4-methoxyphenyl)-1H-indole (Table 2, entry 25): *H NMR (400 MHz, DMSO-ds) & 11.07
(s, 1H), 7.74 — 7.24 (m, 6H), 7.08 — 6.84 (m, 2H), 6.43 (t, J = 1.0 Hz, 1H), 3.74 (s, 3H)

HaC O

2-(p-tolyl) naphthalene (Table 2, entry 24): *H NMR (400 MHz, CDCls) § 7.99 —7.87 (m, 3H),
7.57-7.33 (m, 8H), 2.50 (s, 3H)

Characterization data of the product (compound 6 and 7):

! of
O NH,

4'-chloro-[1,1'-biphenyl]-2-amine (compound 6):!H NMR (400 MHz, DMSO-d6) § 7.45-7.38
(m, 4H), 7.00 (d, J=8, 1H), 6.93 (d, J=8, 1H), 6.72 (d, J=8, 1H), 6.58 (d, J=8, 1H), 4.78 (s, 2H)

519
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0 Cl

NH
OO

Boscalid (compound 7): *H NMR (400 MHz, DMSO-ds) & 10.17 (s, 1H), 8.48 (dd, J = 4.8, 1.9
Hz, 1H), 7.88 (dd, J=7.5, 1.9 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.54-7.46 (m, 6H), 7.40-7.39 (m,
2H). BC NMR (101 MHz, CDCls) & 162.62, 151.43, 146.78, 140.25, 136.35, 134.54, 134.40,
132.37, 131.17, 130.90, 130.34, 129.41, 128.99, 125.45, 123.02, 122.23, 77.34.HR-MS:
343.039[M+H]*

'H (400 MHz, CDCls3) and *3C (100 MHz, CDCls): NMR spectra of all the staring compounds.
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